Abstract
Ergothioneine (ERGO) is a thiol contained in the food that exhibits an excellent antioxidant effect similar to that of glutathione. Although mammals lack a biosynthetic pathway for ERGO, the carnitine/organic cation transporter OCTN1/SLC22A4, which transports ERGO in vivo, is expressed throughout the body, and ERGO is distributed to various organs after oral intake. ERGO is a stable compound that remains in the body for a long time after ingestion. OCTN1 is also expressed in brain parenchymal cells, including neurons, and ERGO in the blood permeates the blood–brain barrier and is distributed to the brain, exhibiting a neuroprotective effect. Recently, the association between central nervous system (CNS) diseases and ERGO has become a research focus. ERGO concentrations in the blood components are lower in patients with cognitive impairment, Parkinson’s disease, and frailty than in healthy subjects. ERGO exerts a protective effect against various neurotoxins and improves the symptoms of cognitive impairment, depression, and epilepsy in animal models. The promotion of neurogenesis and induction of neurotrophic factors, in addition to the antioxidant and anti-inflammatory effects, may be involved in the neuroprotective effect of ERGO. This review shows the association between ERGO and CNS diseases, discusses the possible biomarkers of peripheral ERGO in CNS diseases, and the possible preventive and improvement effects of ERGO on CNS diseases.
Similar content being viewed by others
Data Availability
Not applicable.
Code Availability
Not applicable.
Abbreviations
- Aβ:
-
amyloid beta
- ACh:
-
acetylcholine
- AD:
-
Alzheimer’s disease
- BBB:
-
blood–brain barrier
- BDNF:
-
brain-derived neurotrophic factor
- CIND:
-
cognitive impairment, no dementia
- CNS:
-
central nervous system
- ERGO:
-
ergothioneine
- GABA:
-
γ-amino butyric acid
- MCI:
-
mild cognitive impairment
- mTOR:
-
mammalian target of rapamycin
- NMDA:
-
N-Methyl-D-aspartate
- NT5:
-
neurotrophin 4/5
- PD:
-
Parkinson’s disease
References
Halliwell B, Cheah IK, Tang RMY (2018) Ergothioneine - a diet-derived antioxidant with therapeutic potential. FEBS Lett 592:3357–3366
Ey J, Schömig E, Taubert D (2007) Dietary sources and antioxidant effects of ergothioneine. J Agric Food Chem 55:6466–6474
Sugiura T, Kato S, Shimizu T, Wakayama T, Nakamichi N, Kubo Y, Iwata D, Suzuki K, Soga T, Asano M, Iseki S, Tamai I, Tsuji A, Kato Y (2010) Functional expression of carnitine/organic cation transporter OCTN1/SLC22A4 in mouse small intestine and liver. Drug Metab Dispos 38:1665–1672
Kato Y, Kubo Y, Iwata D, Kato S, Sudo T, Sugiura T, Kagaya T, Wakayama T, Hirayama A, Sugimoto M, Sugihara K, Kaneko S, Soga T, Asano M, Tomita M, Matsui T, Wada M, Tsuji A (2010) Gene knockout and metabolome analysis of carnitine/organic cation transporter OCTN1. Pharm Res 27:832–840
Tang RMY, Cheah IK, Yew TSK, Halliwell B (2018) Distribution and accumulation of dietary ergothioneine and its metabolites in mouse tissues. Sci Rep 8:1601
Paul BD (2021) Ergothioneine: A Stress Vitamin with Antiaging, Vascular, and Neuroprotective. Roles? Antioxid Redox Signal
Gründemann D, Harlfinger S, Golz S, Geerts A, Lazar A, Berkels R, Jung N, Rubbert A, Schömig E (2005) Discovery of the ergothioneine transporter. Proc Natl Acad Sci U S A 102:5256–5261
Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, Suzuki M, Nagasaki M, Ohtsuki M, Ono M, Furukawa H, Nagashima M, Yoshino S, Mabuchi A, Sekine A, Saito S, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K (2003) An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 35:341–348
Taubert D, Grimberg G, Jung N, Rubbert A, Schömig E (2005) Functional role of the 503F variant of the organic cation transporter OCTN1 in Crohn’s disease. Gut 54:1505–1506
Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB (2020) The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 33:190–217
Cheah IK, Halliwell B (2021) Ergothioneine, recent developments. Redox Biol 42:101868
Turck D, Bresson JL, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI, Mangelsdorf I, McArdle HJ, Naska A, Neuhäuser-Berthold M, Nowicka G, Pentieva K, Sanz Y, Siani A, Sjödin A, Stern M, Tomé D, Vinceti M, Willatts P, Engel KH, Marchelli R, Pöting A, Poulsen M, Schlatter JR, Ackerl R, van Loveren H (2017) Statement on the safety of synthetic l-ergothioneine as a novel food - supplementary dietary exposure and safety assessment for infants and young children, pregnant and breastfeeding women. Efsa j 15:e05060
Cheah IK, Tang RM, Yew TS, Lim KH, Halliwell B (2017) Administration of Pure Ergothioneine to Healthy Human Subjects: Uptake, Metabolism, and Effects on Biomarkers of Oxidative Damage and Inflammation. Antioxid Redox Signal 26:193–206
Turck D, Bresson JL, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch‐Ernst KI, Mangelsdorf I, McArdle HJ, Naska A, Neuhäuser‐Berthold M, Nowicka G, Pentieva K, Sanz Y, Siani A, Sjödin A, Stern M, Tomé D, Vinceti M, Willatts P, Engel KH, Marchelli R, Pöting A, Poulsen M, Schlatter J, Ackerl R, van Loveren H (2016) Safety of synthetic l‐ergothioneine (Ergoneine®) as a novel food pursuant to Regulation (EC) No 258/97. EFSA Journal 14
Nakamichi N, Nakao S, Nishiyama M, Takeda Y, Ishimoto T, Masuo Y, Matsumoto S, Suzuki M, Kato Y (2021) Oral Administration of the Food-Derived Hydrophilic Antioxidant Ergothioneine Enhances Object Recognition Memory in Mice. Curr Mol Pharmacol 14:220–233
Aw TY, Wierzbicka G, Jones DP (1991) Oral glutathione increases tissue glutathione in vivo. Chem Biol Interact 80:89–97
Njålsson R (2005) Glutathione synthetase deficiency. Cell Mol Life Sci 62:1938–1945
Crossland J, Woodruff GN, Mitchell JF (1964) IDENTITY OF THE CEREBELLAR FACTOR. Nature 203:1388–1389
Krnjevic K, Randic M, Straughan DW (1965) ERGOYHIONEINE AND CENTRAL NEURONES. Nature 205:603–604
Crossland J, Mitchell J, Woodruff GN (1966) The presence of ergothioneine in the central nervous system and its probable identity with the cerebellar factor. J Physiol 182:427–438
Briggs I (1972) Ergothioneine in the central nervous system. J Neurochem 19:27–35
Nakamichi N, Taguchi T, Hosotani H, Wakayama T, Shimizu T, Sugiura T, Iseki S, Kato Y (2012) Functional expression of carnitine/organic cation transporter OCTN1 in mouse brain neurons: possible involvement in neuronal differentiation. Neurochem Int 61:1121–1132
Lamhonwah AM, Hawkins CE, Tam C, Wong J, Mai L, Tein I (2008) Expression patterns of the organic cation/carnitine transporter family in adult murine brain. Brain Dev 30:31–42
Goldsteins G, Hakosalo V, Jaronen M, Keuters MH, Lehtonen Å, Koistinaho J (2022) CNS Redox Homeostasis and Dysfunction in Neurodegenerative Diseases.Antioxidants (Basel)11
Asslih S, Damri O, Agam G (2021) Neuroinflammation as a Common Denominator of Complex Diseases (Cancer, Diabetes Type 2, and Neuropsychiatric Disorders).Int J Mol Sci22
Nezu J, Tamai I, Oku A, Ohashi R, Yabuuchi H, Hashimoto N, Nikaido H, Sai Y, Koizumi A, Shoji Y, Takada G, Matsuishi T, Yoshino M, Kato H, Ohura T, Tsujimoto G, Hayakawa J, Shimane M, Tsuji A (1999) Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet 21:91–94
Cheah IK, Feng L, Tang RMY, Lim KHC, Halliwell B (2016) Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem Biophys Res Commun 478:162–167
Hatano T, Saiki S, Okuzumi A, Mohney RP, Hattori N (2016) Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. J Neurol Neurosurg Psychiatry 87:295–301
Ishimoto T, Nakamichi N, Hosotani H, Masuo Y, Sugiura T, Kato Y (2014) Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons. PLoS ONE 9:e89434
Ishimoto T, Nakamichi N, Nishijima H, Masuo Y, Kato Y (2018) Carnitine/Organic Cation Transporter OCTN1 Negatively Regulates Activation in Murine Cultured Microglial Cells. Neurochem Res 43:116–128
Li RW, Yang C, Sit AS, Kwan YW, Lee SM, Hoi MP, Chan SW, Hausman M, Vanhoutte PM, Leung GP (2014) Uptake and protective effects of ergothioneine in human endothelial cells. J Pharmacol Exp Ther 350:691–700
Shimizu T, Masuo Y, Takahashi S, Nakamichi N, Kato Y (2015) Organic cation transporter Octn1-mediated uptake of food-derived antioxidant ergothioneine into infiltrating macrophages during intestinal inflammation in mice. Drug Metab Pharmacokinet 30:231–239
Wu LY, Cheah IK, Chong JR, Chai YL, Tan JY, Hilal S, Vrooman H, Chen CP, Halliwell B, Lai MKP (2021) Low plasma ergothioneine levels are associated with neurodegeneration and cerebrovascular disease in dementia. Free Radic Biol Med 177:201–211
Teruya T, Chen YJ, Kondoh H, Fukuji Y, Yanagida M (2021) Whole-blood metabolomics of dementia patients reveal classes of disease-linked metabolites. Proc Natl Acad Sci U S A 118
Kameda M, Teruya T, Yanagida M, Kondoh H (2020) Frailty markers comprise blood metabolites involved in antioxidation, cognition, and mobility. Proc Natl Acad Sci U S A 117:9483–9489
Kondoh H, Teruya T, Kameda M, Yanagida M (2022) Decline of ergothioneine in frailty and cognition impairment. FEBS Lett
Ishimoto T, Kato Y (2022) Ergothioneine in the brain. FEBS Lett
Watanabe N, Matsumoto S, Suzuki S, Fukaya T, Kato Y, Hashiya N (2020) Effect of Ergothioneine on the Cognitive Function Improvement in Healthy Volunteers and Mild Cognitive Impairment Subjects ―A Randomized, Double–blind, Parallel–group Comparison Study―. Jpn Pharmacol Ther 48:685–697
Yang NC, Lin HC, Wu JH, Ou HC, Chai YC, Tseng CY, Liao JW, Song TY (2012) Ergothioneine protects against neuronal injury induced by β-amyloid in mice. Food Chem Toxicol 50:3902–3911
Song TY, Chen CL, Liao JW, Ou HC, Tsai MS (2010) Ergothioneine protects against neuronal injury induced by cisplatin both in vitro and in vivo. Food Chem Toxicol 48:3492–3499
Toledo ARL, Monroy GR, Salazar FE, Lee JY, Jain S, Yadav H, Borlongan CV (2022) Gut-Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders.Int J Mol Sci23
Roe K (2022) An Alternative Explanation for Alzheimer’s Disease and Parkinson’s Disease Initiation from Specific Antibiotics, Gut Microbiota Dysbiosis and Neurotoxins. Neurochem Res 47:517–530
Matsuda Y, Ozawa N, Shinozaki T, Wakabayashi KI, Suzuki K, Kawano Y, Ohtsu I, Tatebayashi Y (2020) Ergothioneine, a metabolite of the gut bacterium Lactobacillus reuteri, protects against stress-induced sleep disturbances. Transl Psychiatry 10:170
Liang CH, Huang PC, Mau JL, Chiang SS (2020) Effect of the King Oyster Culinary-Medicinal Mushroom Pleurotus eryngii (Agaricomycetes) Basidiocarps Powder to Ameliorate Memory and Learning Deficit in Ability in Aβ-Induced Alzheimer’s Disease C57BL/6J Mice Model. Int J Med Mushrooms 22:145–159
Song TY, Lin HC, Chen CL, Wu JH, Liao JW, Hu ML (2014) Ergothioneine and melatonin attenuate oxidative stress and protect against learning and memory deficits in C57BL/6J mice treated with D-galactose. Free Radic Res 48:1049–1060
Jang JH, Aruoma OI, Jen LS, Chung HY, Surh YJ (2004) Ergothioneine rescues PC12 cells from beta-amyloid-induced apoptotic death. Free Radic Biol Med 36:288–299
Jong NN, Nakanishi T, Liu JJ, Tamai I, McKeage MJ (2011) Oxaliplatin transport mediated by organic cation/carnitine transporters OCTN1 and OCTN2 in overexpressing human embryonic kidney 293 cells and rat dorsal root ganglion neurons. J Pharmacol Exp Ther 338:537–547
Cheah IK, Ng LT, Ng LF, Lam VY, Gruber J, Huang CYW, Goh FQ, Lim KHC, Halliwell B (2019) Inhibition of amyloid-induced toxicity by ergothioneine in a transgenic Caenorhabditis elegans model. FEBS Lett 593:2139–2150
Shitara Y, Nakamichi N, Norioka M, Shima H, Kato Y, Horie T (2013) Role of organic cation/carnitine transporter 1 in uptake of phenformin and inhibitory effect on complex I respiration in mitochondria. Toxicol Sci 132:32–42
Nakamichi N, Nakayama K, Ishimoto T, Masuo Y, Wakayama T, Sekiguchi H, Sutoh K, Usumi K, Iseki S, Kato Y (2016) Food-derived hydrophilic antioxidant ergothioneine is distributed to the brain and exerts antidepressant effect in mice. Brain Behav 6:e00477
Ishimoto T, Masuo Y, Kato Y, Nakamichi N (2019) Ergothioneine-induced neuronal differentiation is mediated through activation of S6K1 and neurotrophin 4/5-TrkB signaling in murine neural stem cells. Cell Signal 53:269–280
Castrén E, Monteggia LM (2021) Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biol Psychiatry 90:128–136
K VA, Mohan AS, Chakravarty S (2020) Rapid acting antidepressants in the mTOR pathway: Current evidence. Brain Res Bull 163:170–177
Nishiyama M, Nakamichi N, Yoshimura T, Masuo Y, Komori T, Ishimoto T, Matsuo JI, Kato Y (2020) Homostachydrine is a Xenobiotic Substrate of OCTN1/SLC22A4 and Potentially Sensitizes Pentylenetetrazole-Induced Seizures in Mice. Neurochem Res 45:2664–2678
Yang J, Yan B, Zhao B, Fan Y, He X, Yang L, Ma Q, Zheng J, Wang W, Bai L, Zhu F, Ma X (2020) Assessing the Causal Effects of Human Serum Metabolites on 5 Major Psychiatric Disorders. Schizophr Bull 46:804–813
Nakamichi N, Kato Y (2017) Physiological Roles of Carnitine/Organic Cation Transporter OCTN1/SLC22A4 in Neural Cells. Biol Pharm Bull 40:1146–1152
Pochini L, Scalise M, Galluccio M, Indiveri C (2012) Regulation by physiological cations of acetylcholine transport mediated by human OCTN1 (SLC22A4). Implications in the non-neuronal cholinergic system. Life Sci 91:1013–1016
Gründemann D, Hartmann L, Flögel S (2021) The ergothioneine transporter (ETT): substrates and locations, an inventory. FEBS Lett
Roda E, Priori EC, Ratto D, De Luca F, Di Iorio C, Angelone P, Locatelli CA, Desiderio A, Goppa L, Savino E, Bottone MG, Rossi P (2021) Neuroprotective Metabolites of Hericium erinaceus Promote Neuro-Healthy Aging.Int J Mol Sci22
Moncaster JA, Walsh DT, Gentleman SM, Jen LS, Aruoma OI (2002) Ergothioneine treatment protects neurons against N-methyl-D-aspartate excitotoxicity in an in vivo rat retinal model. Neurosci Lett 328:55–59
Song TY, Yang NC, Chen CL, Thi TLV (2017) Protective Effects and Possible Mechanisms of Ergothioneine and Hispidin against Methylglyoxal-Induced Injuries in Rat Pheochromocytoma Cells. Oxid Med Cell Longev 2017:4824371
Koh SS, Ooi SC, Lui NM, Qiong C, Ho LT, Cheah IK, Halliwell B, Herr DR, Ong WY (2021) Effect of Ergothioneine on 7-Ketocholesterol-Induced Endothelial Injury. Neuromolecular Med 23:184–198
Futatsugi A, Masuo Y, Kawabata S, Nakamichi N, Kato Y (2016) L503F variant of carnitine/organic cation transporter 1 efficiently transports metformin and other biguanides. J Pharm Pharmacol 68:1160–1169
Toh DS, Koo SH, Limenta LM, Yee JY, Murray M, Lee EJ (2009) Genetic variations of the SLC22A4 gene in Chinese and Indian populations of Singapore. Drug Metab Pharmacokinet 24:475–481
Urban TJ, Yang C, Lagpacan LL, Brown C, Castro RA, Taylor TR, Huang CC, Stryke D, Johns SJ, Kawamoto M, Carlson EJ, Ferrin TE, Burchard EG, Giacomini KM (2007) Functional effects of protein sequence polymorphisms in the organic cation/ergothioneine transporter OCTN1 (SLC22A4). Pharmacogenet Genomics 17:773–782
Acknowledgements
We would like to thank Editage (www.editage.com) for English language editing.
Author information
Authors and Affiliations
Contributions
Conceptualization: Noritaka Nakamichi. Writing - original draft preparation: Noritaka Nakamichi. Writing, review, and editing: Noritaka Nakamichi, Sota Tsuzuku, Fumiya Shibagaki. Supervision: Noritaka Nakamichi.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no potential conflicts of interest.
Ethics approval
Not applicable.
Consent for publication
Not applicable.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nakamichi, N., Tsuzuku, S. & Shibagaki, F. Ergothioneine and central nervous system diseases. Neurochem Res 47, 2513–2521 (2022). https://doi.org/10.1007/s11064-022-03665-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11064-022-03665-2