Skip to main content

Advertisement

Log in

Rho–Rho-Kinase Regulates Ras-ERK Signaling Through SynGAP1 for Dendritic Spine Morphology

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The structural plasticity of dendritic spines plays a critical role in NMDA-induced long-term potentiation (LTP) in the brain. The small GTPases RhoA and Ras are considered key regulators of spine morphology and enlargement. However, the regulatory interaction between RhoA and Ras underlying NMDA-induced spine enlargement is largely unknown. In this study, we found that Rho-kinase/ROCK, an effector of RhoA, phosphorylated SynGAP1 (a synaptic Ras-GTPase activating protein) at Ser842 and increased its interaction with 14-3-3ζ, thereby activating Ras-ERK signaling in a reconstitution system in HeLa cells. We also found that the stimulation of NMDA receptor by glycine treatment for LTP induction stimulated SynGAP1 phosphorylation, Ras-ERK activation, spine enlargement and SynGAP1 delocalization from the spines in striatal neurons, and these effects were prevented by Rho-kinase inhibition. Rho-kinase-mediated phosphorylation of SynGAP1 appeared to increase its dissociation from PSD95, a postsynaptic scaffolding protein located at postsynaptic density, by forming a complex with 14-3-3ζ. These results suggest that Rho-kinase phosphorylates SynGAP1 at Ser842, thereby activating the Ras-ERK pathway for NMDA-induced morphological changes in dendritic spines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during this study are available from the corresponding author on reasonable request.

References

  1. Anggono V, Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol 22:461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behavior. Neuron 61:340–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shepherd JD, Huganir RL (2007) The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 23:613–643

    Article  CAS  PubMed  Google Scholar 

  4. Vitureira N, Goda Y (2013) Cell biology in neuroscience: the interplay between Hebbian and homeostatic synaptic plasticity. J Cell Biol 203:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zeng M, Shang Y, Araki Y, Guo T, Huganir RL, Zhang M (2016) Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166:1163-1175 e1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405:955–959

    Article  CAS  PubMed  Google Scholar 

  7. Krapivinsky G, Medina I, Krapivinsky L, Gapon S, Clapham DE (2004) SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation. Neuron 43:563–574

    Article  CAS  PubMed  Google Scholar 

  8. Murakoshi H, Yasuda R (2012) Postsynaptic signaling during plasticity of dendritic spines. Trends Neurosci 35:135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murakoshi H, Wang H, Yasuda R (2011) Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472:100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kasai H, Ziv NE, Okazaki H, Yagishita S, Toyoizumi T (2021) Spine dynamics in the brain, mental disorders and artificial neural networks. Nat Rev Neurosci 22:407–422

    Article  CAS  PubMed  Google Scholar 

  11. Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13:169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183

    Article  CAS  PubMed  Google Scholar 

  13. Nishioka T, Amano M, Funahashi Y, Tsuboi D, Yamahashi Y, Kaibuchi K (2019) In vivo identification of protein kinase substrates by kinase-oriented substrate screening (KIOSS). Curr Protoc Chem Biol 11:e60

    Article  PubMed  CAS  Google Scholar 

  14. Nishioka T, Nakayama M, Amano M, Kaibuchi K (2012) Proteomic screening for Rho-kinase substrates by combining kinase and phosphatase inhibitors with 14-3-3zeta affinity chromatography. Cell Struct Funct 37:39–48

    Article  CAS  PubMed  Google Scholar 

  15. Muslin AJ, Tanner JW, Allen PM, Shaw AS (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84:889–897

    Article  CAS  PubMed  Google Scholar 

  16. Nishioka T, Nakayama M, Amano M, Kaibuchi K (2012) Proteomic screening for Rho-kinase substrates by combining kinase and phosphatase inhibitors with 14-3-3ζ affinity chromatography. Cell Struct Funct 7:39–48

    Article  Google Scholar 

  17. Nagai T, Nakamuta S, Kuroda K, Nakauchi S, Nishioka T, Takano T, Zhang X, Tsuboi D, Funahashi Y, Nakano T, Yoshimoto J, Kobayashi K, Uchigashima M, Watanabe M, Miura M, Nishi A, Kobayashi K, Yamada K, Amano M, Kaibuchi K (2016) Phosphoproteomics of the dopamine pathway enables discovery of Rap1 activation as a reward signal in vivo. Neuron 89:550–565

    Article  CAS  PubMed  Google Scholar 

  18. Nagai T, Yoshimoto J, Kannon T, Kuroda K, Kaibuchi K (2016) Phosphorylation signals in striatal medium spiny neurons. Trends Pharmacol Sci 37:858–871

    Article  CAS  PubMed  Google Scholar 

  19. Ahammad RU, Nishioka T, Yoshimoto J, Kannon T, Amano M, Funahashi Y, Tsuboi D, Faruk MO, Yamahashi Y, Yamada K, Nagai T, Kaibuchi K (2021) Kanphos: a database of kinase-associated neural protein phosphorylation in the brain. Cells 11(1):47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chen HJ, Rojas-Soto M, Oguni A, Kennedy MB (1998) A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20:895–904

    Article  CAS  PubMed  Google Scholar 

  21. Kim JH, Liao D, Lau LF, Huganir RL (1998) SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20:683–691

    Article  CAS  PubMed  Google Scholar 

  22. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877

    Article  CAS  PubMed  Google Scholar 

  23. Jeyabalan N, Clement JP (2016) SYNGAP1: Mind the Gap. Front Cell Neurosci 10:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Llamosas N, Arora V, Vij R, Kilinc M, Bijoch L, Rojas C, Reich A, Sridharan B, Willems E, Piper DR, Scampavia L, Spicer TP, Miller CA, Holder JL, Rumbaugh G (2020) SYNGAP1 controls the maturation of dendrites, synaptic function, and network activity in developing human neurons. J Neurosci 40:7980–7994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Noboru H, Komiyama AMW, Carlisle Holly J, Porter Karen, Charlesworth Paul, Jennifer Monti DJCS, O’Carroll Colin M, Martin Stephen J, Morris Richard G. M, O’Dell Thomas J, Grant Seth G. N (2002) SynGAP regulates ERK:MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 22(22):9721–9732

    Article  Google Scholar 

  26. Araki Y, Zeng M, Zhang M, Huganir RL (2015) Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85:173–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ikeda M, Hikita T, Taya S, Uraguchi-Asaki J, Toyo-oka K, Wynshaw-Boris A, Ujike H, Inada T, Takao K, Miyakawa T, Ozaki N, Kaibuchi K, Iwata N (2008) Identification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia. Hum Mol Genet 17:3212–3222

    Article  CAS  PubMed  Google Scholar 

  28. Navarrete M, Zhou Y (2022) The 14-3-3 protein family and Schizophrenia. Front Mol Neurosci 15:857495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cornell B, Toyo-Oka K (2017) 14-3-3 proteins in brain development: neurogenesis, neuronal migration and neuromorphogenesis. Front Mol Neurosci 10:318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cheah PS, Ramshaw HS, Thomas PQ, Toyo-Oka K, Xu X, Martin S, Coyle P, Guthridge MA, Stomski F, van den Buuse M, Wynshaw-Boris A, Lopez AF, Schwarz QP (2012) Neurodevelopmental and neuropsychiatric behaviour defects arise from 14-3-3zeta deficiency. Mol Psychiatry 17:451–466

    Article  CAS  PubMed  Google Scholar 

  31. Xu X, Jaehne EJ, Greenberg Z, McCarthy P, Saleh E, Parish CL, Camera D, Heng J, Haas M, Baune BT, Ratnayake U, van den Buuse M, Lopez AF, Ramshaw HS, Schwarz Q (2015) 14-3-3zeta deficient mice in the BALB/c background display behavioural and anatomical defects associated with neurodevelopmental disorders. Sci Rep 5:12434

    Article  PubMed  PubMed Central  Google Scholar 

  32. Angrand PO, Segura I, Volkel P, Ghidelli S, Terry R, Brajenovic M, Vintersten K, Klein R, Superti-Furga G, Drewes G, Kuster B, Bouwmeester T, Acker-Palmer A (2006) Transgenic mouse proteomics identifies new 14-3-3-associated proteins involved in cytoskeletal rearrangements and cell signaling. Mol Cell Proteomics 5:2211–2227

    Article  CAS  PubMed  Google Scholar 

  33. Amano M, Tsumura Y, Taki K, Harada H, Mori K, Nishioka T, Kato K, Suzuki T, Nishioka Y, Iwamatsu A, Kaibuchi K (2010) A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase. PLoS One 5:e8704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Medina AE, Liao DS, Mower AF, Ramoa AS (2001) Do NMDA receptor kinetics regulate the end of critical periods of plasticity. Cell Press 32:553–556

    CAS  Google Scholar 

  35. Hui-Chen Lu, Gonzalez Ernesto, Crair MC (2001) Barrel cortex critical period plasticity is independent of changes in NMDA receptor subunit composition. Cell Press 32:619–634

    Google Scholar 

  36. Molnar E (2011) Long-term potentiation in cultured hippocampal neurons. Semin Cell Dev Biol 22:506–513

    Article  CAS  PubMed  Google Scholar 

  37. Paul A, Nawalpuri B, Shah D, Sateesh S, Muddashetty RS, Clement JP (2019) Differential regulation of syngap1 translation by FMRP modulates eEF2 mediated response on NMDAR activity. Front Mol Neurosci 12:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feng W, Zhang M (2009) Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat Rev Neurosci 10:87–99

    Article  CAS  PubMed  Google Scholar 

  39. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781

    Article  CAS  PubMed  Google Scholar 

  40. Walkup WG, Washburn L, Sweredoski MJ, Carlisle HJ, Graham RL, Hess S, Kennedy MB (2015) Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases. J Biol Chem 290:4908–4927

    Article  CAS  PubMed  Google Scholar 

  41. Lee KJ, Lee Y, Rozeboom A, Lee JY, Udagawa N, Hoe HS, Pak DT (2011) Requirement for Plk2 in orchestrated ras and rap signaling, homeostatic structural plasticity, and memory. Neuron 69:957–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nishimura T, Yamaguchi T, Kato K, Yoshizawa M, Nabeshima Y, Ohno S, Hoshino M, Kaibuchi K (2005) PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nat Cell Biol 7:270–277

    Article  CAS  PubMed  Google Scholar 

  43. Mizushima S, Nagata S (1990) pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 18:5322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Amano M, Hamaguchi T, Shohag MH, Kozawa K, Kato K, Zhang X, Yura Y, Matsuura Y, Kataoka C, Nishioka T, Kaibuchi K (2015) Kinase-interacting substrate screening is a novel method to identify kinase substrates. J Cell Biol 209:895–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Amano M, Chihara K, Nakamura N, Fukata Y, Yano T, Shibata M, Ikebe M, Kaibuchi K (1998) Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes Cells 3:177–188

    Article  CAS  PubMed  Google Scholar 

  46. Funahashi Y, Ariza A, Emi R, Xu Y, Shan W, Suzuki K, Kozawa S, Ahammad RU, Wu M, Takano T, Yura Y, Kuroda K, Nagai T, Amano M, Yamada K, Kaibuchi K (2019) Phosphorylation of Npas4 by MAPK regulates reward-related gene expression and Behaviors. Cell Rep 29:3235-3252 e3239

    Article  CAS  PubMed  Google Scholar 

  47. Takano T, Wu M, Nakamuta S, Naoki H, Ishizawa N, Namba T, Watanabe T, Xu C, Hamaguchi T, Yura Y, Amano M, Hahn KM, Kaibuchi K (2017) Discovery of long-range inhibitory signaling to ensure single axon formation. Nat Commun 8:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Watanabe, T. Nishioka, K. Kuroda, S. Kozawa and other Kaibuchi laboratory members for helpful discussions and preparation of some materials, T. Ishii for secretarial assistance, and S. Furuta for life support. We also thank the Division for Research on Laboratory Animals, the Radioisotope Center Medical Branch and Medical Research Engineering of Nagoya University Graduate School of Medicine and the Education and Research Center of Animal Models for Human Diseases in Fujita Health University.

Funding

This work was supported by the following funding sources: ‘‘Bioinformatics for Brain Sciences’’ performed under the SRPBS from MEXT and AMED (KK); AMED Grant Nos. JP21dm0207075 (KK), JP21wm0425017 (YF); JSPS KAKENHI Grant Nos. JP17H01380 (KK), JP17J09461 (MW), JP17K07383 (MA), JP18K14849 (YF), JP21K06428 (YF), JP21K06427 (DT); MEXT KAKENHI Grant Nos. JP19H05209 (KK), JP21H00196 (KK); the Uehara Science Foundation (KK, YF), the Takeda Science Foundation (KK, YF), and the Hori Sciences & Arts Foundation (KK, YF).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [MW, YF, TT, KK]; Methodology: [MW, YF, DT, MA]; Formal analysis and investigation: [MW, YF, EH, RUA, MA]; Writing—original draft preparation: [MW]; Writing—review and editing: [YF, KK]; Funding acquisition: [MW, YF, DT, MA, KK]; Resources: [YF, TT, DT, MA]; Supervision: [KY, KK]. All authors provided critical feedback and helped shape the research, analysis, and manuscript. All authors approved the final version submitted.

Corresponding author

Correspondence to Kozo Kaibuchi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Ethical Approval

All animal experiments were approved and performed in accordance with the guidelines for the care and use of laboratory animals established by the Animal Experiments Committee of Nagoya University Graduate School of Medicine (Approval Number: 20094) and Fujita Health University (Approval Number: AP20037). All experiments were conducted in compliance with the ARRIVE guidelines.

Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11064_2022_3623_MOESM1_ESM.eps

Supplementary file1 (EPS 1653 kb)—Interaction of SynGAP1 with 14-3-3 proteins. Extracts of mouse striatum were incubated with rabbit IgG or anti-SynGAP1 antibody for 1 hour, and then with Protein A sepharose 4 Fast Flow beads for 1 hour. The immunoprecipitates were analyzed by immunoblotting with anti-SynGAP1, anti-14-3-3 (pan), anti-14-3-3β, anti-14-3-3γ, anti-14-3-3ε, 14-3-3η, 14-3-3σ, anti-14-3-3θ, and anti-14-3-3ζ, antibodies. Data represent the mean ± SEM of three independent experiments and were analyzed by Student's t-test. *P < 0.05, **P < 0.01, ns: not significant.

11064_2022_3623_MOESM2_ESM.eps

Supplementary file2 (EPS 1912 kb)—The effect of CaMKII on the interaction of SynGAP1 with PSD95. COS7 cell lysates expressing the indicated proteins were incubated with glutathione sepharose 4B beads. The bound proteins and cell lysates were subjected to immunoblot analysis using an anti-Myc, anti-GST, anti-GFP antibodies. The data represent the mean±SEM of three independent experiments and were analyzed by one-way ANOVA with Tukey's post hoc test. **p<0.01, ***p<0.001, ****p<0.0001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Funahashi, Y., Takano, T. et al. Rho–Rho-Kinase Regulates Ras-ERK Signaling Through SynGAP1 for Dendritic Spine Morphology. Neurochem Res 47, 2757–2772 (2022). https://doi.org/10.1007/s11064-022-03623-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03623-y

Keywords

Navigation