Skip to main content

Advertisement

Log in

Preventive Effect of Betaine Against Cognitive Impairments in Amyloid β Peptide-Injected Mice Through Sirtuin1 in Hippocampus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the pathophysiology of Alzheimer’s disease, the deposition of amyloid β peptide (Aβ) is associated with oxidative stress, leading to cognitive impairment and neurodegeneration. We have already reported that betaine (glycine betaine), an osmolyte and methyl donor in cells, prevents the development of cognitive impairment in mice with intracerebroventricular injection of Aβ25–35, an active fragment of Aβ, associated with oxidative stress in the hippocampus, but molecular mechanisms of betaine remain to be determined. Here, to investigate a key molecule underlying the preventive effect of betaine against cognitive impairments in Aβ25–35-injected mice, cognitive tests and qPCR assays were performed in Aβ25–35-injected mice with continuous betaine intake, in which intake was started a day before Aβ25–35 injection, and then continued for 8 days. The Aβ25–35 injection impaired short-term and object recognition memories in the Y-maze and object recognition tests, respectively. PCR assays revealed the down-regulation of Sirtuin1 (SIRT1), a NAD+-dependent deacetylase that mediates metabolic responses, in the hippocampus of Aβ25–35-injected mice, whereas betaine intake prevented memory deficits as well as the decrease of hippocampal SIRT1 expression in Aβ25–35-injected mice. Further, sirtinol, an inhibitor of the Sirtuin family, blocked the preventive effect of betaine against memory deficits. On the other hand, resveratrol, the potent compound that activates SIRT1, also prevented memory impairments in Aβ25–35-injected mice, suggesting that SIRT1 plays a causative role in the preventive effect of betaine against memory deficits caused by Aβ exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

Aβ:

Amyloid β peptide

AD:

Alzheimer’s disease

BGT-1:

Betaine/GABA transporter-1

CaMK2α:

CaM-kinase IIα

GAT2:

GABA transporter 2

mTOR:

Mammalian target of rapamycin

PPARɤ:

Peroxisome proliferator-activated receptor γ

PSD95:

Postsynaptic density protein 95

SIRT1:

Sirtuin1

SNAP25:

Synaptosomal associated protein 25

SOD:

Superoxide dismutase

References

  1. Cummings J, Lee G, Zhong K, Fonseca J, Taghva K (2021) Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement (NY) 7:e12179

    Google Scholar 

  2. Palmer AM (2002) Pharmacotherapy for Alzheimer’s disease: progress and prospects. Trends Pharmacol Sci 23:426–433

    Article  CAS  PubMed  Google Scholar 

  3. Burns A, Iliffe S (2009) Alzheimer’s disease. BMJ 338:b158

    Article  PubMed  Google Scholar 

  4. Bature F, Guinn BA, Pang D, Pappas Y (2017) Signs and symptoms preceding the diagnosis of Alzheimer’s disease: a systematic scoping review of literature from 1937 to 2016. BMJ Open 7:e015746

    Article  PubMed  PubMed Central  Google Scholar 

  5. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer′s disease: causes and treatment. Molecules 25:5789

    Article  CAS  PubMed Central  Google Scholar 

  6. Rowan MJ, Klyubin I, Wang Q, Hu NW, Anwyl R (2007) Synaptic memory mechanisms: Alzheimer’s disease amyloid beta-peptide-induced dysfunction. Biochem Soc Trans 35:1219–1223

    Article  CAS  PubMed  Google Scholar 

  7. Barron M, Gartlon J, Dawson LA, Atkinson PJ, Pardon MC (2017) A state of delirium: deciphering the effect of inflammation on tau pathology in Alzheimer’s disease. Exp Gerontol 94:103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2013:316523

    PubMed  PubMed Central  Google Scholar 

  9. Fang F, Liu GT (2006) Protective effects of compound FLZ on beta-amyloid peptide-(25–35)-induced mouse hippocampal injury and learning and memory impairment. Acta Pharmacol Sin 27:651–658

    Article  CAS  PubMed  Google Scholar 

  10. Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alkam T, Nitta A, Mizoguchi H, Itoh A, Murai R, Nagai T, Yamada K, Nabeshima T (2008) The extensive nitration of neurofilament light chain in the hippocampus is associated with the cognitive impairment induced by amyloid beta in mice. J Pharmacol Exp Ther 327:137–147

    Article  CAS  PubMed  Google Scholar 

  12. Alkam T, Nitta A, Mizoguchi H, Saito K, Seshima M, Itoh A, Yamada K, Nabeshima T (2008) Restraining tumor necrosis factor-alpha by thalidomide prevents the amyloid beta-induced impairment of recognition memory in mice. Behav Brain Res 189:100–106

    Article  CAS  PubMed  Google Scholar 

  13. Maurice T, Lockhart BP, Privat A (1996) Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Res 706:181–193

    Article  CAS  PubMed  Google Scholar 

  14. Tran MH, Yamada K, Olariu A, Mizuno M, Ren XH, Nabeshima T (2001) Amyloid beta-peptide induces nitric oxide production in rat hippocampus: association with cholinergic dysfunction and amelioration by inducible nitric oxide synthase inhibitors. Faseb J 15:1407–1409

    Article  CAS  PubMed  Google Scholar 

  15. Trubetskaya VV, Stepanichev MY, Onufriev MV, Lazareva NA, Markevich VA, Gulyaeva NV (2003) Administration of aggregated beta-amyloid peptide (25–35) induces changes in long-term potentiation in the hippocampus in vivo. Neurosci Behav Physiol 33:95–98

    Article  CAS  PubMed  Google Scholar 

  16. Ibi D, Tsuchihashi A, Nomura T, Hiramatsu M (2019) Involvement of GAT2/BGT-1 in the preventive effects of betaine on cognitive impairment and brain oxidative stress in amyloid beta peptide-injected mice. Eur J Pharmacol 842:57–63

    Article  CAS  PubMed  Google Scholar 

  17. Donmez G, Guarente L (2010) Aging and disease: connections to sirtuins. Aging Cell 9:285–290

    Article  CAS  PubMed  Google Scholar 

  18. Wencel PL, Lukiw WJ, Strosznajder JB, Strosznajder RP (2018) Inhibition of poly(ADP-ribose) polymerase-1 enhances gene expression of selected sirtuins and APP cleaving enzymes in amyloid beta cytotoxicity. Mol Neurobiol 55:4612–4623

    Article  CAS  PubMed  Google Scholar 

  19. Rizzi L, Roriz-Cruz M (2018) Sirtuin 1 and Alzheimer’s disease: an up-to-date review. Neuropeptides 71:54–60

    Article  CAS  PubMed  Google Scholar 

  20. Craig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80:539–549

    Article  CAS  PubMed  Google Scholar 

  21. Zeisel SH, Mar MH, Howe JC, Holden JM (2003) Concentrations of choline-containing compounds and betaine in common foods. J Nutr 133:1302–1307

    Article  CAS  PubMed  Google Scholar 

  22. Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    Article  CAS  PubMed  Google Scholar 

  23. Zeisel SH, Blusztajn JK (1994) Choline and human nutrition. Annu Rev Nutr 14:269–296

    Article  CAS  PubMed  Google Scholar 

  24. Kempson SA, Zhou Y, Danbolt NC (2014) The betaine/GABA transporter and betaine: roles in brain, kidney, and liver. Front Physiol 5:159

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kumar T, Sharma GS, Singh LR (2016) Homocystinuria: therapeutic approach. Clin Chim Acta 458:55–62

    Article  CAS  PubMed  Google Scholar 

  26. Valayannopoulos V, Schiff M, Guffon N, Nadjar Y, García-Cazorla A, Martinez-Pardo Casanova M, Cano A, Couce ML, Dalmau J, Peña-Quintana L, Rigalleau V, Touati G, Aldamiz-Echevarria L, Cathebras P, Eyer D, Brunet D, Damaj L, Dobbelaere D, Gay C, Hiéronimus S, Levrat V, Maillot F (2019) Betaine anhydrous in homocystinuria: results from the RoCH registry. Orphanet J Rare Dis 14:66

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ohnishi T, Balan S, Toyoshima M, Maekawa M, Ohba H, Watanabe A, Iwayama Y, Fujita Y, Tan Y, Hisano Y, Shimamoto-Mitsuyama C, Nozaki Y, Esaki K, Nagaoka A, Matsumoto J, Hino M, Mataga N, Hayashi-Takagi A, Hashimoto K, Kunii Y, Kakita A, Yabe H, Yoshikawa T (2019) Investigation of betaine as a novel psychotherapeutic for schizophrenia. EBioMedicine 45:432–446

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lin JC, Lee MY, Chan MH, Chen YC, Chen HH (2016) Betaine enhances antidepressant-like, but blocks psychotomimetic effects of ketamine in mice. Psychopharmacology 233:3223–3235

    Article  CAS  PubMed  Google Scholar 

  29. Qu Y, Zhang K, Pu Y, Chang L, Wang S, Tan Y, Wang X, Zhang J, Ohnishi T, Yoshikawa T, Hashimoto K (2020) Betaine supplementation is associated with the resilience in mice after chronic social defeat stress: a role of brain-gut-microbiota axis. J Affect Disord 272:66–76

    Article  CAS  PubMed  Google Scholar 

  30. Ibi D, Hirashima K, Kojima Y, Sumiya K, Kondo S, Yamamoto M, Ando T, Hiramatsu M (2021) Preventive effects of continuous betaine intake on cognitive impairment and aberrant gene expression in hippocampus of 3xTg mouse model of Alzheimer’s disease. J Alzheimers Dis 79:639–652

    Article  CAS  PubMed  Google Scholar 

  31. Allaman I, Gavillet M, Bélanger M, Laroche T, Viertl D, Lashuel HA, Magistretti PJ (2010) Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. J Neurosci 30:3326–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hiramatsu M, Takiguchi O, Nishiyama A, Mori H (2010) Cilostazol prevents amyloid beta peptide(25–35)-induced memory impairment and oxidative stress in mice. Br J Pharmacol 161:1899–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haley TJ, McCormick WG (1957) Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother 12:12–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ibi D, de la Fuente RM, Kezunovic N, Muguruza C, Saunders JM, Gaitonde SA, Moreno JL, Ijaz MK, Santosh V, Kozlenkov A, Holloway T, Seto J, Garcia-Bea A, Kurita M, Mosley GE, Jiang Y, Christoffel DJ, Callado LF, Russo SJ, Dracheva S, Lopez-Gimenez JF, Ge Y, Escalante CR, Meana JJ, Akbarian S, Huntley GW, Gonzalez-Maeso J (2017) Antipsychotic-induced Hdac2 transcription via NF-kappaB leads to synaptic and cognitive side effects. Nat Neurosci 20:1247–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ibi D, Suzuki F, Hiramatsu M (2018) Effect of AceK (acesulfame potassium) on brain function under dietary restriction in mice. Physiol Behav 188:291–297

    Article  CAS  PubMed  Google Scholar 

  36. Jahn H (2013) Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci 15:445–454

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve AA, Pasinetti GM (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281:21745–21754

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Bi Y, Chen X, Li C, Li Y, Zhang Z, Wang J, Lu Y, Yu Q, Su H, Yang H, Liu G (2016) Histone deacetylase SIRT1 negatively regulates the differentiation of interleukin-9-producing CD4(+) T cells. Immunity 44:1337–1349

    Article  CAS  PubMed  Google Scholar 

  39. Liu YC, Gao XX, Zhang ZG, Lin ZH, Zou QL (2017) PPAR gamma coactivator 1 beta (PGC-1β) reduces mammalian target of rapamycin (mTOR) expression via a SIRT1-dependent mechanism in neurons. Cell Mol Neurobiol 37:879–887

    Article  CAS  PubMed  Google Scholar 

  40. Purushotham A, Schug TT, Li X (2009) SIRT1 performs a balancing act on the tight-rope toward longevity. Aging (Albany NY) 1:669–673

    Article  CAS  Google Scholar 

  41. McCord JM, Fridovich I (1988) Superoxide dismutase: the first twenty years (1968–1988). Free Radic Biol Med 5:363–369

    Article  CAS  PubMed  Google Scholar 

  42. Moraes DS, Moreira DC, Andrade JMO, Santos SHS (2020) Sirtuins, brain and cognition: a review of resveratrol effects. IBRO Rep 9:46–51

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ma L, Li Y (2015) SIRT1: role in cardiovascular biology. Clin Chim Acta 440:8–15

    Article  CAS  PubMed  Google Scholar 

  44. Revollo JR, Li X (2013) The ways and means that fine tune Sirt1 activity. Trends Biochem Sci 38:160–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Kim TH, Ahn MY, Lee J, Jung JH, Choi WS, Lee BM, Yoon KS, Yoon S, Kim HS (2012) Sirtinol, a class III HDAC inhibitor, induces apoptotic and autophagic cell death in MCF-7 human breast cancer cells. Int J Oncol 41:1101–1109

    Article  CAS  PubMed  Google Scholar 

  46. Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiong S, Salazar G, Patrushev N, Alexander RW (2011) FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J Biol Chem 286:5289–5299

    Article  CAS  PubMed  Google Scholar 

  48. Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159:993–1002

    Article  CAS  PubMed  Google Scholar 

  49. Li MZ, Zheng LJ, Shen J, Li XY, Zhang Q, Bai X, Wang QS, Ji JG (2018) SIRT1 facilitates amyloid beta peptide degradation by upregulating lysosome number in primary astrocytes. Neural Regen Res 13:2005–2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kumar R, Chaterjee P, Sharma PK, Singh AK, Gupta A, Gill K, Tripathi M, Dey AB, Dey S (2013) Sirtuin1: a promising serum protein marker for early detection of Alzheimer’s disease. PLoS ONE 8:e61560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Helisalmi S, Vepsäläinen S, Hiltunen M, Koivisto AM, Salminen A, Laakso M, Soininen H (2008) Genetic study between SIRT1, PPARD, PGC-1alpha genes and Alzheimer’s disease. J Neurol 255:668–673

    Article  CAS  PubMed  Google Scholar 

  52. Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M, Flamez P, Dequenne A, Godaux E, van Leuven F, Fahrenholz F (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113:1456–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gomes BAQ, Silva JPB, Romeiro CFR, Dos Santos SM, Rodrigues CA, Gonçalves PR, Sakai JT, Mendes PFS, Varela ELP, Monteiro MC (2018) Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: role of SIRT1. Oxid Med Cell Longev 2018:8152373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N (2018) The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal 28:643–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bonnefont-Rousselot D (2016) Resveratrol and cardiovascular diseases. Nutrients 8:250

    Article  PubMed Central  CAS  Google Scholar 

  56. Borden LA (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–356

    Article  CAS  PubMed  Google Scholar 

  57. Yamauchi A, Uchida S, Kwon HM, Preston AS, Robey RB, Garcia-Perez A, Burg MB, Handler JS (1992) Cloning of a Na(+)- and Cl(-)-dependent betaine transporter that is regulated by hypertonicity. J Biol Chem 267:649–652

    Article  CAS  PubMed  Google Scholar 

  58. Zamami Y, Imanishi M, Takechi K, Ishizawa K (2017) Pharmacological approach for drug repositioning against cardiorenal diseases. J Med Invest 64:197–201

    Article  PubMed  Google Scholar 

  59. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, Sharifi-Rad J (2018) Resveratrol: a double-edged sword in health benefits. Biomedicines 6:91

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Takayoshi Mamiya and Mr. Hiroyuki Mizuno (Meijo University) for the technical advice and helping with data analysis regarding the behavioral assay.

Funding

This work was financially supported by the Japan Society for the Promotion of Science (JSPS) 17K08321 and 20K07076 (MH), and the International Research Center for Pathogenesis of Intractable Diseases as well as Recycle of Natural Resources; the Research Institute of Meijo University. This work was also supported by the Matching Fund Subsidy for Private Universities from MEXT in Japan, which was used to purchase the confocal laser scanning fluorescence microscope. The authors would like to thank the Division for Research of Laboratory Animals, Meijo University for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: DI, MH. Performed the experiments: SK, AO, YK. Analyzed the data: DI, GN, RT. Wrote the paper: DI, MH.

Corresponding author

Correspondence to Masayuki Hiramatsu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of the present work.

Ethical Approval

All experimental procedures were approved by the animal ethics board of Meijo University, and followed the guidelines of the Japanese Pharmacological Society (Folia Pharmacol. Japon, 1992, 99: 35A), the Interministerial Decree of May 25th, 1987 (Ministry of Education, Japan), and the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 8023, revised 1978).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibi, D., Kondo, S., Ohmi, A. et al. Preventive Effect of Betaine Against Cognitive Impairments in Amyloid β Peptide-Injected Mice Through Sirtuin1 in Hippocampus. Neurochem Res 47, 2333–2344 (2022). https://doi.org/10.1007/s11064-022-03622-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03622-z

Keywords

Navigation