Skip to main content
Log in

Neurotoxicological Profiling of Paraquat in Zebrafish Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Paraquat is a polar herbicide protecting plant products against invasive species, it requires careful manipulation and restricted usage because of its harmful potentials. Exposure to paraquat triggers oxidative damage in dopaminergic neurons and subsequently causes a behavioral defect in vivo. Thereby, persistent exposure to paraquat is known to increase Parkinson’s disease risk by dysregulating dopaminergic systems in humans. Therefore, most studies have focused on the dopaminergic systems to elucidate the neurotoxicological mechanism of paraquat poisoning, and more comprehensive neurochemistry including histaminergic, serotonergic, cholinergic, and GABAergic systems has remained unclear. Therefore, in this study, we investigated the toxicological potential of paraquat poisoning using a variety of approaches such as toxicokinetic profiles, behavioral effects, neural activity, and broad-spectrum neurochemistry in zebrafish larvae after short-term exposure to paraquat and we performed the molecular modeling approach. Our results showed that paraquat was slowly absorbed in the brain of zebrafish after oral administration of paraquat. In addition, paraquat toxicity resulted in behavioral impairments, namely, reduced motor activity and led to abnormal neural activities in zebrafish larvae. This locomotor deficit came with a dysregulation of dopamine synthesis induced by the inhibition of tyrosine hydroxylase activity, which was also indirectly confirmed by molecular modeling studies. Furthermore, short-term exposure to paraquat also caused simultaneous dysregulation of other neurochemistry including cholinergic and serotonergic systems in zebrafish larvae. The present study suggests that this neurotoxicological profiling could be a useful tool for understanding the brain neurochemistry of neurotoxic agents that might be a potential risk to human and environmental health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Abbreviations

3-HAA:

3-Hydroxyanthranilic acid

3-HK:

3-Hydroxykynurenine

3-MT:

3-Methoxytyramine

5-HIAA:

5-Hydroxyindoleacetic acid

5-HT:

5-Hydroxytryptamine (serotonin)

5-HTP:

5-Hydroxytryptophan

AA:

Anthranilic acid

ACHO:

Acetylcholine

BBB:

Blood–brain barrier

BET:

Betaine

CHO:

Choline

CNS:

Central nervous system

DA:

Dopamine

E:

Epinephrine

GABA:

Gamma-aminobutyric acid

GLN:

Glutamine

GLU:

Glutamic acid

HA:

Histamine

HIS:

Histidine

KYN:

Kynurenine

KYNA:

Kynurenic acid

LC–MS/MS:

Liquid chromatography triple quadruple mass spectrometry

L-DOPA:

3,4-Dihydroxy-L-phenylalanine

LDT:

Light dark transition

LEU:

Leucine

LYS:

Lysine

ME:

Melatonin

NE:

Norepinephrine

NM:

Normetanephrine

OA:

Octopamine

PD:

Parkinson’s disease

PHE:

Phenylalanine

PQ:

Paraquat

SE:

Serine

TA:

Tyramine

TH:

Tyrosine hydroxylase

TRYP:

Tryptophan

TYR:

Tyrosine

References

  1. Harding DP, Raizada MN (2015) Controlling weeds with fungi, bacteria and viruses: a review. Front Plant Sci 6:659

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bonneh-Barkay D, Reaney SH, Langston WJ, Di Monte DA (2005) Redox cycling of the herbicide paraquat in microglial cultures. Mol Brain Res 134:52–56

    Article  CAS  PubMed  Google Scholar 

  3. Dinis-Oliveira R, Remiao F, Carmo H, Duarte J, Navarro AS, Bastos M, Carvalho F (2006) Paraquat exposure as an etiological factor of Parkinson’s disease. Neurotoxicology 27:1110–1122

    Article  CAS  PubMed  Google Scholar 

  4. Mollace V, Muscoli C, Palma E, Granato T, Rispoli V, Nisticò R, Rotiroti D, Salvemini D (2003) The role of oxidative stress in paraquat-induced neurotoxicity in rats: protection by non peptidyl superoxide dismutase mimetic. Neurosci Lett 335:163–166

    Article  CAS  PubMed  Google Scholar 

  5. Shimizu K, Matsubara K, Ohtaki K, Fujimaru S, Saito O, Shiono H (2003) Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res 976:243–252

    Article  CAS  PubMed  Google Scholar 

  6. Wu B, Song B, Yang H, Huang B, Chi B, Guo Y, Liu H (2013) Central nervous system damage due to acute paraquat poisoning: an experimental study with rat model. Neurotoxicology 35:62–70

    Article  CAS  PubMed  Google Scholar 

  7. Yang W-l, Sun AY (1998) Paraquat-induced cell death in PC12 cells. Neurochem Res 23:1387–1394

    Article  CAS  PubMed  Google Scholar 

  8. Ascherio A, Chen H, Weisskopf MG, O’Reilly E, McCullough ML, Calle EE, Schwarzschild MA, Thun MJ (2006) Pesticide exposure and risk for Parkinson’s disease. Ann Neurol 60:197–203

    Article  CAS  PubMed  Google Scholar 

  9. Kuehn BM (2010) Increased risk of ADHD associated with early exposure to pesticides, PCBs. JAMA 304:27–28

    Article  CAS  PubMed  Google Scholar 

  10. Richardson JR, Roy A, Shalat SL, Von Stein RT, Hossain MM, Buckley B, Gearing M, Levey AI, German DC (2014) Elevated serum pesticide levels and risk for Alzheimer disease. JAMA Neurol 71:284–290

    Article  PubMed  PubMed Central  Google Scholar 

  11. Richardson JR, Quan Y, Sherer TB, Greenamyre JT, Miller GW (2005) Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol Sci 88:193–201

    Article  CAS  PubMed  Google Scholar 

  12. Czerniczyniec A, Karadayian AG, Bustamante J, Cutrera RA, Lores-Arnaiz S (2011) Paraquat induces behavioral changes and cortical and striatal mitochondrial dysfunction. Free Radical Biol Med 51:1428–1436

    Article  CAS  Google Scholar 

  13. Brady S (2005) Basic neurochemistry: molecular, cellular and medical aspects. Elsevier

    Google Scholar 

  14. Jamwal S, Kumar P (2019) Insight into the emerging role of striatal neurotransmitters in the pathophysiology of parkinson’s disease and huntington’s disease: a review. Curr Neuropharmacol 17:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35:63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim SS, Im SH, Yang JY, Lee Y-R, Kim GR, Chae JS, Shin D-S, Song JS, Ahn S, Lee BH (2017) Zebrafish as a screening model for testing the permeability of blood–brain barrier to small molecules. Zebrafish 14:322–330

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Baraban SC (2019) Network properties revealed during multi-scale calcium imaging of seizure activity in zebrafish. Eneuro 6:0041–0019

    Article  Google Scholar 

  18. Westerfield, M. (2000) The zebrafish book: a guide for the laboratory use of zebrafish. http://zfin.org/zf_info/zfbook/zfbk.html

  19. Kim SS, Hwang K-S, Yang JY, Chae JS, Kim GR, Kan H, Jung MH, Lee H-Y, Song JS, Ahn S (2020) Neurochemical and behavioral analysis by acute exposure to bisphenol A in zebrafish larvae model. Chemosphere 239:124751

    Article  CAS  PubMed  Google Scholar 

  20. Kim SS, Kan H, Hwang K-S, Yang JY, Son Y, Shin D-S, Lee BH, Ahn SH, Ahn JH, Cho S-H (2021) Neurochemical effects of 4-(2Chloro-4-fluorobenzyl)-3-(2-thienyl)-1, 2, 4-oxadiazol-5 (4H)-one in the pentylenetetrazole (PTZ)-induced epileptic seizure zebrafish model. Int J Mol Sci 22:1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim SS, Lee H-Y, Song JS, Bae M-A, Ahn S (2021) UPLC-MS/MS-based profiling of 31 neurochemicals in the mouse brain after treatment with the antidepressant nefazodone. Microchem J 169:106580

    Article  CAS  Google Scholar 

  22. Basnet RM, Zizioli D, Taweedet S, Finazzi D, Memo M (2019) Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines 7:23

    Article  PubMed Central  CAS  Google Scholar 

  23. Vieira JCF, Bassani TB, Santiago RM, Guaita GdO, Zanoveli JM, da Cunha C, Vital MA (2019) Anxiety-like behavior induced by 6-OHDA animal model of Parkinson’s disease may be related to a dysregulation of neurotransmitter systems in brain areas related to anxiety. Behav Brain Res 371:111981

    Article  PubMed  CAS  Google Scholar 

  24. Lee Y, Seo HW, Lee KJ, Jang J-W, Kim S (2020) A microfluidic system for stable and continuous EEG monitoring from multiple larval zebrafish. Sensors 20:5903

    Article  CAS  PubMed Central  Google Scholar 

  25. Hwang K-S, Yang JY, Lee J, Lee Y-R, Kim SS, Kim GR, Chae JS, Ahn JH, Shin D-S, Choi T-Y (2018) A novel anti-melanogenic agent, KDZ-001, inhibits tyrosinase enzymatic activity. J Dermatol Sci 89:165–171

    Article  CAS  PubMed  Google Scholar 

  26. Thi Hue N, Nguyen TPM, Nam H, Hoang Tung N (2018) Paraquat in surface water of some streams in Mai Chau Province, the Northern Vietnam: concentrations, profiles, and human risk assessments. J Chem 2018:1–8

    Article  CAS  Google Scholar 

  27. No, O. T. (1992) 203: Fish, acute toxicity test. In OECD (Ed.), OECD guidelines for the testing of chemicals, section.

  28. économiques Odcedd (2013) Test No. 210: fish, early-life stage toxicity test. OECD Publishing.

  29. Kovrižnych JA, Sotníková R, Zeljenková D, Rollerová E, Szabova E, Wimmerová S (2013) Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages–comparative study. Interdiscip Toxicol 6:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhang C, Zhou T, Wang J, Zhang S, Zhu L, Du Z, Wang J (2018) Acute and chronic toxic effects of fluoxastrobin on zebrafish (Danio rerio). Sci Total Environ 610:769–775

    Article  PubMed  CAS  Google Scholar 

  31. Jeong J-Y, Kwon H-B, Ahn J-C, Kang D, Kwon S-H, Park JA, Kim K-W (2008) Functional and developmental analysis of the blood–brain barrier in zebrafish. Brain Res Bull 75:619–628

    Article  CAS  PubMed  Google Scholar 

  32. Kirla KT, Groh KJ, Steuer AE, Poetzsch M, Banote RK, Stadnicka-Michalak J, Eggen RI, Schirmer K, Kraemer T (2016) From the cover: zebrafish larvae are insensitive to stimulation by cocaine: importance of exposure route and toxicokinetics. Toxicol Sci 154:183–193

    Article  CAS  PubMed  Google Scholar 

  33. Chanyachukul T, Yoovathaworn K, Thongsaard W, Chongthammakun S, Navasumrit P, Satayavivad J (2004) Attenuation of paraquat-induced motor behavior and neurochemical disturbances by L-valine in vivo. Toxicol Lett 150:259–269

    Article  CAS  PubMed  Google Scholar 

  34. Kalyn M, Hua K, Mohd Noor S, Wong CED, Ekker M (2020) Comprehensive analysis of neurotoxin-induced ablation of dopaminergic neurons in Zebrafish Larvae. Biomedicines 8:1

    Article  CAS  Google Scholar 

  35. Carpinella I, Crenna P, Calabrese E, Rabuffetti M, Mazzoleni P, Nemni R, Ferrarin M (2007) Locomotor function in the early stage of Parkinson’s disease. IEEE Trans Neural Syst Rehabil Eng 15:543–551

    Article  PubMed  Google Scholar 

  36. Wang XH, Souders CL II, Zhao YH, Martyniuk CJ (2018) Paraquat affects mitochondrial bioenergetics, dopamine system expression, and locomotor activity in zebrafish (Danio rerio). Chemosphere 191:106–117

    Article  CAS  PubMed  Google Scholar 

  37. Nellore J, Nandita P (2015) Paraquat exposure induces behavioral deficits in larval zebrafish during the window of dopamine neurogenesis. Toxicol Rep 2:950–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tokunaga I, Takeichi S, Kujime T, Maeiwa M (1990) Electroencephalographical analysis of acute paraquat poisoning. Nihon hoigaku zasshi 44:1–5

    CAS  PubMed  Google Scholar 

  39. De Gori N, Froio F, Strongoli M, De Francesco A, Calò M, Nisticò G (1988) Behavioural and electrocortical changes induced by paraquat after injection in specific areas of the brain of the rat. Neuropharmacology 27:201–207

    Article  PubMed  Google Scholar 

  40. Ferger B, Kropf W, Kuschinsky K (1994) Studies on electroencephalogram (EEG) in rats suggest that moderate doses of cocaine ord-amphetamine activate D1 rather than D2 receptors. Psychopharmacology 114:297–308

    Article  CAS  PubMed  Google Scholar 

  41. Shokry IM, Sinha V, Da Silva G, Park S-b, Callanan JJ, Tao R (2019) Comparison of electroencephalogram (EEG) response to MDPV versus the hallucinogenic drugs MK-801 and ketamine in rats. Exp Neurol 313:26–36

    Article  CAS  PubMed  Google Scholar 

  42. Kashiwagi M, Kanuka M, Tanaka K, Fujita M, Nakai A, Tatsuzawa C, Kobayashi K, Ikeda K, Hayashi Y (2021) Impaired wakefulness and rapid eye movement sleep in dopamine-deficient mice. Mol Brain 14:1–4

    Article  CAS  Google Scholar 

  43. Izumi Y, Ezumi M, Takada-Takatori Y, Akaike A, Kume T (2014) Endogenous dopamine is involved in the herbicide paraquat-induced dopaminergic cell death. Toxicol Sci 139:466–478

    Article  CAS  PubMed  Google Scholar 

  44. Fredriksson A, Fredriksson M, Eriksson P (1993) Neonatal exposure to paraquat or MPTP induces permanent changes in striatum dopamine and behavior in adult mice. Toxicol Appl Pharmacol 122:258–264

    Article  CAS  PubMed  Google Scholar 

  45. Litteljohn D, Nelson E, Bethune C, Hayley S (2011) The effects of paraquat on regional brain neurotransmitter activity, hippocampal BDNF and behavioural function in female mice. Neurosci Lett 502:186–191

    Article  CAS  PubMed  Google Scholar 

  46. Bortolotto JW, Cognato GP, Christoff RR, Roesler LN, Leite CE, Kist LW, Bogo MR, Vianna MR, Bonan CD (2014) Long-term exposure to paraquat alters behavioral parameters and dopamine levels in adult zebrafish (Danio rerio). Zebrafish 11:142–153

    Article  CAS  PubMed  Google Scholar 

  47. Tokuoka H, Muramatsu S-i, Sumi-Ichinose C, Sakane H, Kojima M, Aso Y, Nomura T, Metzger D, Ichinose H (2011) Compensatory regulation of dopamine after ablation of the tyrosine hydroxylase gene in the nigrostriatal projection. J Biol Chem 286:43549–43558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chitre NM, Wood BJ, Ray A, Moniri NH, Murnane KS (2020) Docosahexaenoic acid protects motor function and increases dopamine synthesis in a rat model of Parkinson’s disease via mechanisms associated with increased protein kinase activity in the striatum. Neuropharmacology 167:107976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He X, Yang S, Zhang R, Hou L, Xu J, Hu Y, Xu R, Wang H, Zhang Y (2019) Smilagenin Protects Dopaminergic Neurons in Chronic MPTP/Probenecid—Lesioned Parkinson’s Disease Models. Front Cell Neurosci 13:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang T, Li C, Han B, Wang Z, Meng X, Zhang L, He J, Fu F (2020) Neuroprotective effects of Danshensu on rotenone-induced Parkinson’s disease models in vitro and in vivo. BMC Complement Med Therap 20:1–10

    Google Scholar 

  51. Perez XA, Parameswaran N, Huang LZ, O’Leary KT, Quik M (2008) Pre-synaptic dopaminergic compensation after moderate nigrostriatal damage in non-human primates. J Neurochem 105:1861–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ugrumov M, Khaindrava V, Kozina E, Kucheryanu V, Bocharov E, Kryzhanovsky G, Kudrin V, Narkevich V, Klodt P, Rayevsky K (2011) Modeling of presymptomatic and symptomatic stages of parkinsonism in mice. Neuroscience 181:175–188

    Article  CAS  PubMed  Google Scholar 

  53. Kuhl DE, Minoshima S, Fessler JA, Ficaro E, Wieland D, Koeppe RA, Frey KA, Foster NL (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40:399–410

    Article  CAS  PubMed  Google Scholar 

  54. Szabo A, Nemcsok J, Asztalos B, Rakonczay Z, Kasa P (1992) The effect of pesticides on carp (Cyprinus carpio L). Acetylcholinesterase and its biochemical characterization. Ecotoxicol Environ Saf 23:39–45

    Article  CAS  PubMed  Google Scholar 

  55. Park JH, Jung JW, Ahn Y-J, Kwon HW (2012) Neuroprotective properties of phytochemicals against paraquat-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Pestic Biochem Physiol 104:118–125

    Article  CAS  Google Scholar 

  56. Del Pino J, Moyano P, Díaz GG, Anadon MJ, Diaz MJ, García JM, Lobo M, Pelayo A, Sola E, Frejo MT (2017) Primary hippocampal neuronal cell death induction after acute and repeated paraquat exposures mediated by AChE variants alteration and cholinergic and glutamatergic transmission disruption. Toxicology 390:88–99

    Article  PubMed  CAS  Google Scholar 

  57. Politis M, Loane C (2011) Serotonergic dysfunction in Parkinson’s disease and its relevance to disability. Sci World J 11:1726–1734

    Article  CAS  Google Scholar 

  58. Huot P, Fox SH (2013) The serotonergic system in motor and non-motor manifestations of Parkinson’s disease. Exp Brain Res 230:463–476

    Article  CAS  PubMed  Google Scholar 

  59. Yang W, Tiffany-Castiglioni E (2005) The bipyridyl herbicide paraquat produces oxidative stress-mediated toxicity in human neuroblastoma SH-SY5Y cells: relevance to the dopaminergic pathogenesis. J Toxicol Environ Health A 68:1939–1961

    Article  CAS  PubMed  Google Scholar 

  60. Kang MJ, Gil SJ, Koh HC (2009) Paraquat induces alternation of the dopamine catabolic pathways and glutathione levels in the substantia nigra of mice. Toxicol Lett 188:148–152

    Article  CAS  PubMed  Google Scholar 

  61. Pendleton RG, Rasheed A, Hillman R (2000) Effects of adrenergic agents on locomotor behavior and reproductive development in Drosophila. Drug Dev Res 50:142–146

    Article  CAS  Google Scholar 

  62. Pendleton RG, Rasheed A, Sardina T, Tully T, Hillman R (2002) Effects of tyrosine hydroxylase mutants on locomotor activity in Drosophila: a study in functional genomics. Behav Genet 32:89–94

    Article  PubMed  Google Scholar 

  63. Haavik J, Toska K (1998) Tyrosine hydroxylase and Parkinson’s disease. Mol Neurobiol 16:285–309

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Korea Environment Industry & Technology Institute (KEITI) through Technology Development Project for Safety Management of Household Chemical Products, funded by Korea Ministry of Environment (MOE) (2020002960007, NTIS-1485017544), Republic of Korea. This work was also partially supported by project of Korea Research Institute of Chemical Technology (SI2131-50), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

SSK and KSH: Conceptualization, Methodology, Formal analysis, Investigation, and Writing–original draft; HMK, JYY, YS, DSS, and BHL: Methodology, Investigation, Formal analysis. CHC: Methodology, Investigation, and Writing–original draft, MAB: Conceptualization, Writing–review & editing, Funding acquisition, Supervision, and Project administration.

Corresponding author

Correspondence to Myung Ae Bae.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 327 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.S., Hwang, KS., Kan, H. et al. Neurotoxicological Profiling of Paraquat in Zebrafish Model. Neurochem Res 47, 2294–2306 (2022). https://doi.org/10.1007/s11064-022-03615-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03615-y

Keywords

Navigation