Skip to main content

Advertisement

Log in

Glutamine Maintains Satellite Glial Cells Growth and Survival in Culture

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Satellite glial cells (SGCs) tightly surround neurons and modulate sensory transmission in dorsal root ganglion (DRG). At present, the biological property of primary SGCs in culture deserves further investigation. To reveal the key factor for SGCs growth and survival, we examined the effects of different culture supplementations containing Dulbecco’s Modified Eagle Medium (DMEM)/F12, DMEM high glucose (HG) or Neurobasal-A (NB). CCK-8 proliferation assay showed an increased proliferation of SGCs in DMEM/F12 and DMEM/HG, but not in NB medium. Bax, AnnexinV, and propidium iodide (PI) staining results showed that NB medium caused cell death and apoptosis. We showed that glutamine was over 2.5 mM in DMEM/F12 and DMEM/HG, whereas it was absence in NB medium. Interestingly, exogenous glutamine application significantly reversed the poor proliferation and cell death of SGCs in NB medium. These findings demonstrated that DMEM/F12 medium was optimal to get high-purity SGCs. Glutamine was the key molecule to maintain SGCs growth and survival in culture. Here, we provided a novel approach to get high-purity SGCs by changing the key component of culture medium. Our study shed a new light on understanding the biological property and modulation of glial cells of primary sensory ganglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. The authors declared that all the data had been included in the manuscript, and the raw data could be obtained from the corresponding author with reasonable request.

Abbreviations

Bax:

Bcl-2 Associated protein X

DAPI:

4',6-Diamidino-2-phenylindole dihydrochloride

DMEM:

Dulbecco’s Modified Eagle Medium

HG:

High glucose

DRG:

Dorsal root ganglion

GS:

Glutamine synthetase

GFAP:

Glial fibrillary acidic protein

NB:

Neurobasal-A

PI:

Propidium iodide

SGC:

Satellite glial cell

References

  1. Pannese E (2010) The structure of the perineuronal sheath of satellite glial cells (SGCs) in sensory ganglia. Neuron Glia Biol 6:3–10

    Article  PubMed  Google Scholar 

  2. Hanani M (2012) Intercellular communication in sensory ganglia by purinergic receptors and gap junctions: implications for chronic pain. Brain Res 1487:183–191

    Article  PubMed  CAS  Google Scholar 

  3. Feldman-Goriachnik R, Wu B, Hanani M (2018) Cholinergic responses of satellite glial cells in the superior cervical ganglia. Neurosci Lett 671:19–24

    Article  PubMed  CAS  Google Scholar 

  4. Fornaro M, Sharthiya H, Tiwari V (2018) Adult mouse DRG explant and dissociated cell models to investigate neuroplasticity and responses to environmental insults including viral infection. J Vis Exp 133:56757

    Google Scholar 

  5. Ji RR, Donnelly CR, Nedergaard M (2019) Astrocytes in chronic pain and itch. Nat Rev Neurosci 20:667–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ohara PT, Vit JP, Bhargava A et al (2009) Gliopathic pain: when satellite glial cells go bad. Neuroscientist 15:450–463

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cherkas PS, Huang TY, Pannicke T, Tal M, Reichenbach A, Hanani M (2004) The effects of axotomy on neurons and satellite glial cells in mouse trigeminal ganglion. Pain 110:290–298

    Article  PubMed  Google Scholar 

  8. Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 48:457–476

    Article  PubMed  CAS  Google Scholar 

  9. Ji RR, Chamessian A, Zhang YQ (2016) Pain regulation by non-neuronal cells and inflammation. Science 354:572–577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lemes J, de Campos LT, Santos DO et al (2018) Participation of satellite glial cells of the dorsal root ganglia in acute nociception. Neurosci Lett 676:8–12

    Article  PubMed  CAS  Google Scholar 

  11. Zemel BM, Muqeem T, Brown EV et al (2017) Calcineurin dysregulation underlies spinal cord injury-induced K(+) channel dysfunction in DRG neurons. J Neurosci 37:8256–8272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Leisengang S, Ott D, Murgott J, Gerstberger R, Rummel C, Roth J (2018) Primary cultures from rat dorsal root ganglia: responses of neurons and glial cells to somatosensory or inflammatory stimulation. Neuroscience 394:1–13

    Article  PubMed  CAS  Google Scholar 

  13. Christie K, Koshy D, Cheng C et al (2015) Intraganglionic interactions between satellite cells and adult sensory neurons. Mol Cell Neurosci 67:1–12

    Article  PubMed  CAS  Google Scholar 

  14. Capuano A, De Corato A, Lisi L, Tringali G, Navarra P, Dello RC (2009) Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: relevance for migraine pathology. Mol Pain 5:43

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gu Y, Chen Y, Zhang X, Li GW, Wang C, Huang LY (2010) Neuronal soma-satellite glial cell interactions in sensory ganglia and the participation of purinergic receptors. Neuron Glia Biol 6:53–62

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang XB, Ma W, Luo T et al (2019) A novel primary culture method for high-purity satellite glial cells derived from rat dorsal root ganglion. Neural Regen Res 14:339–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Belzer V, Shraer N, Hanani M (2010) Phenotypic changes in satellite glial cells in cultured trigeminal ganglia. Neuron Glia Biol 6:237–243

    Article  PubMed  Google Scholar 

  18. Jager SB, Pallesen LT, Vaegter CB (2018) Isolation of satellite glial cells for high-quality RNA purification. J Neurosci Methods 297:1–8

    Article  PubMed  CAS  Google Scholar 

  19. Shen H, Gan M, Yang H, Zou J (2019) An integrated cell isolation and purification method for rat dorsal root ganglion neurons. J Int Med Res 47:3253–3260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tongtako W, Lehmbecker A, Wang Y, Hahn K, Baumgartner W, Gerhauser I (2017) Canine dorsal root ganglia satellite glial cells represent an exceptional cell population with astrocytic and oligodendrocytic properties. Sci Rep 7:13915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Leo M, Schmitt LI, Kutritz A, Kleinschnitz C, Hagenacker T (2021) Cisplatin-induced activation and functional modulation of satellite glial cells lead to cytokine-mediated modulation of sensory neuron excitability. Exp Neurol 341:113695

    Article  PubMed  CAS  Google Scholar 

  22. Schmitt LI, Leo M, Kutritz A, Kleinschnitz C, Hagenacker T (2020) Activation and functional modulation of satellite glial cells by oxaliplatin lead to hyperexcitability of sensory neurons in vitro. Mol Cell Neurosci 105:103499

    Article  PubMed  CAS  Google Scholar 

  23. Ma W, Yang JW, Wang XB et al (2021) Negative regulation by proBDNF signaling of peripheral neurogenesis in the sensory ganglia of adult rats. Biomed Pharmacother 144:112273

    Article  PubMed  CAS  Google Scholar 

  24. Takeda M, Takahashi M, Matsumoto S (2009) Contribution of the activation of satellite glia in sensory ganglia to pathological pain. Neurosci Biobehav Rev 33:784–792

    Article  PubMed  CAS  Google Scholar 

  25. Woodham P, Anderson PN, Nadim W, Turmaine M (1989) Satellite cells surrounding axotomised rat dorsal root ganglion cells increase expression of a GFAP-like protein. Neurosci Lett 98:8–12

    Article  PubMed  CAS  Google Scholar 

  26. Xu M, Aita M, Chavkin C (2008) Partial infraorbital nerve ligation as a model of trigeminal nerve injury in the mouse: behavioral, neural, and glial reactions. J PAIN 9:1036–1048

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xie W, Strong JA, Zhang JM (2009) Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models. Neuroscience 160:847–857

    Article  PubMed  CAS  Google Scholar 

  28. Liu FY, Sun YN, Wang FT et al (2012) Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain Res 1427:65–77

    Article  PubMed  CAS  Google Scholar 

  29. Di Cesare ML, Pacini A, Micheli L, Tani A, Zanardelli M, Ghelardini C (2014) Glial role in oxaliplatin-induced neuropathic pain. Exp Neurol 261:22–33

    Article  Google Scholar 

  30. Liu H, Zhao L, Gu W et al (2018) Activation of satellite glial cells in trigeminal ganglion following dental injury and inflammation. J Mol Histol 49:257–263

    Article  PubMed  CAS  Google Scholar 

  31. Takeda M, Tanimoto T, Kadoi J et al (2007) Enhanced excitability of nociceptive trigeminal ganglion neurons by satellite glial cytokine following peripheral inflammation. Pain 129:155–166

    Article  PubMed  CAS  Google Scholar 

  32. Zhu G, Chen Z, Dai B et al (2018) Chronic lead exposure enhances the sympathoexcitatory response associated with P2X4 receptor in rat stellate ganglia. Environ Toxicol 33:631–639

    Article  PubMed  CAS  Google Scholar 

  33. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  PubMed  CAS  Google Scholar 

  34. Boise LH, Gonzalez-Garcia M, Postema CE et al (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597–608

    Article  PubMed  CAS  Google Scholar 

  35. McDonald ES, Windebank AJ (2002) Cisplatin-induced apoptosis of DRG neurons involves bax redistribution and cytochrome c release but not fas receptor signaling. Neurobiol Dis 9:220–233

    Article  PubMed  CAS  Google Scholar 

  36. Lu T, Zhang C, Chai M, An Y (2016) Isoquercetin ameliorates tunicamycin-induced apoptosis in rat dorsal root ganglion neurons via suppressing ROS-dependent endoplasmic reticulum stress. Biomed Pharmacother 80:343–351

    Article  PubMed  CAS  Google Scholar 

  37. Zhang L, Zhang Y (2013) Halothane increases neuronal cell death vulnerability by downregulating miR-214 and upregulating Bax. Int J Clin Exp Med 6:452–460

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Patel TD, Jackman A, Rice FL, Kucera J, Snider WD (2000) Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 25:345–357

    Article  PubMed  CAS  Google Scholar 

  39. Patel TD, Kramer I, Kucera J et al (2003) Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron 38:403–416

    Article  PubMed  CAS  Google Scholar 

  40. Suzuki H, Aoyama Y, Senzaki K et al (2010) Characterization of sensory neurons in the dorsal root ganglia of Bax-deficient mice. Brain Res 1362:23–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Crowley LC, Marfell BJ, Scott AP, Waterhouse NJ (2016) Quantitation of apoptosis and necrosis by annexin v binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot087288

    Article  PubMed  Google Scholar 

  42. Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR (2011) Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp 50:2597

    Google Scholar 

  43. George D, Ahrens P, Lambert S (2018) Satellite glial cells represent a population of developmentally arrested Schwann cells. Glia 66:1496–1506

    Article  PubMed  Google Scholar 

  44. Yu YQ, Barry DM, Hao Y, Liu XT, Chen ZF (2017) Molecular and neural basis of contagious itch behavior in mice. Science 355:1072–1076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yu YQ, Zhao F, Guan SM, Chen J (2011) Antisense-mediated knockdown of Na(V)1.8, but not Na(V)1.9, generates inhibitory effects on complete Freund’s adjuvant-induced inflammatory pain in rat. Plos One 6:e19865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bao F, Kang X, Xie Q, Wu J (2019) HIF-alpha/PKM2 and PI3K-AKT pathways involved in the protection by dexmedetomidine against isoflurane or bupivacaine-induced apoptosis in hippocampal neuronal HT22 cells. Exp Ther Med 17:63–70

    PubMed  CAS  Google Scholar 

  47. Schaeffer V, Meyer L, Patte-Mensah C, Eckert A, Mensah-Nyagan AG (2010) Sciatic nerve injury induces apoptosis of dorsal root ganglion satellite glial cells and selectively modifies neurosteroidogenesis in sensory neurons. Glia 58:169–180

    Article  PubMed  Google Scholar 

  48. Thippeswamy T, McKay JS, Morris R, Quinn J, Wong LF, Murphy D (2005) Glial-mediated neuroprotection: evidence for the protective role of the NO-cGMP pathway via neuron-glial communication in the peripheral nervous system. Glia 49:197–210

    Article  PubMed  Google Scholar 

  49. Zhao W, Zhao Q, Liu J et al (2008) Electro-acupuncture reduces neuronal apoptosis linked to Bax and Bcl-2 expression in the spinal cords of cats subjected to partial dorsal root ganglionectomy. Neurochem Res 33:2214–2221

    Article  PubMed  CAS  Google Scholar 

  50. Liu J, Wu Y (2017) Electro-acupuncture-modulated miR-214 prevents neuronal apoptosis by targeting Bax and inhibits sodium channel Nav1.3 expression in rats after spinal cord injury. Biomed Pharmacother 89:1125–1135

    Article  PubMed  CAS  Google Scholar 

  51. Yang CZ, Zhao R, Dong Y, Chen XQ, Yu AC (2008) Astrocyte and neuron intone through glutamate. Neurochem Res 33:2480–2486

    Article  PubMed  CAS  Google Scholar 

  52. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2017) Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol Neurobiol 54:2969–2985

    Article  PubMed  CAS  Google Scholar 

  54. Fullana N, Gasull-Camos J, Tarres-Gatius M, Castane A, Bortolozzi A, Artigas F (2020) Astrocyte control of glutamatergic activity: downstream effects on serotonergic function and emotional behavior. Neuropharmacology 166:107914

    Article  PubMed  CAS  Google Scholar 

  55. DeBerardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324

    Article  PubMed  CAS  Google Scholar 

  56. Metallo CM, Gameiro PA, Bell EL et al (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15:6479–6483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Le A, Lane AN, Hamaker M et al (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15:110–121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Cruzat V, Macedo RM, Noel KK, Curi R, Newsholme P (2018) Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 10(11):1564

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mates JM, Perez-Gomez C, Nunez DCI, Asenjo M, Marquez J (2002) Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol 34:439–458

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from NSFC grant 31871067, 81571073, Shaanxi Science Fund 2020JZ-27, 2018JC-014, Experimental Animal grant SYDW-2017-08, FMMU grant 2021HKYX29, and Tangdu Hospital grant 2018QYTS001, 2021SHRC013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huan Wang or Yao-Qing Yu.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The experimental procedures were approved by the Institutional Animal Care and Use Committee of FMMU.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, N., Liu, YP., Wang, RR. et al. Glutamine Maintains Satellite Glial Cells Growth and Survival in Culture. Neurochem Res 47, 3635–3646 (2022). https://doi.org/10.1007/s11064-022-03614-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03614-z

Keywords

Navigation