Skip to main content

Advertisement

Log in

Exosomes Secreted from circZFHX3-modified Mesenchymal Stem Cells Repaired Spinal Cord Injury Through mir-16-5p/IGF-1 in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Background

Spinal cord injury (SCI) is a devastating neurological event that leads to severe motor and sensory dysfunction. Exosome-mediated transfer of circular RNAs (circRNAs) was associated with SCI, and exosomes have been reported to be produced by mesenchymal stem cells (MSCs). This study is designed to explore the mechanism of exosomal circZFHX3 on LPS-induced MSCs injury in SCI.

Methods

Exosomes were detected by transmission electron microscope and nanoparticle tracking analysis. CD9, CD63, CD81, and TSC101, B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), Cleaved caspase 3, and Insulin-like growth factor 1 (IGF-1) protein levels were measured by western blot assay. CircZFHX3, microRNA-16-5p (miR-16-5p), and IGF-1 level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability and apoptosis were detected by Cell Counting Kit-8 (CCK-8) and flow cytometry assay. Levels of IL-1β, IL-6, and TNF-α were assessed using Enzyme-linked immunosorbent assays (ELISA). ROS, LDH, and SOD levels were measured by the special kits. The binding between miR-16-5p and circZFHX3 or IGF-1 was predicted by Starbase and DianaTools and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. The biological role of exosomal circZFHX3 on SCI mice was examined in vivo.

Results

CircZFHX3 and IGF-1 were decreased, and miR-16-5p was increased in SCI mice. Also, exosomal circZFHX3 boosted cell viability and repress apoptosis, inflammation, and oxidative stress in LPS-treated BV-2 cells in vitro. Mechanically, circZFHX3 acted as a sponge of miR-16-5p to regulate IGF-1 expression. Exosomal circZFHX3 reduced cell injury of SCI in vivo.

Conclusions

Exosomal circZFHX3 inhibited LPS-induced BV-2 cell injury partly by regulating the miR-16-5p/ IGF-1 axis, hinting at a promising therapeutic strategy for the SCI treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bennett J, Das,Emmady JM P. D. Spinal Cord Injuries. StatPearls. Treasure Island (FL):StatPearls Publishing. Copyright (2021) © StatPearls Publishing LLC.; 2021

  2. Tica,Didangelos J A (2018) Comparative Transcriptomics of Rat and Axolotl After Spinal Cord Injury Dissects Differences and Similarities in Inflammatory and Matrix Remodeling Gene Expression Patterns. Front Neurosci 12:808

    Article  PubMed  Google Scholar 

  3. Spinal Cord Injury (SCI) 2016 Facts and Figures at a Glance.J Spinal Cord Med39:493–494

  4. Paterniti I, Mazzon E, Emanuela E, Paola RD, Galuppo M, Bramanti P, Cuzzocrea S (2010) Modulation of inflammatory response after spinal cord trauma with deferoxamine, an iron chelator. Free Radic Res 44:694–709

    Article  CAS  PubMed  Google Scholar 

  5. Norenberg MD, Smith J, Marcillo A (2004) The pathology of human spinal cord injury: defining the problems. J Neurotrauma 21:429–440

    Article  PubMed  Google Scholar 

  6. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018

    Article  PubMed  Google Scholar 

  7. Witiw,Fehlings CD M. G (2015) Acute Spinal Cord Injury. J Spinal Disord Tech 28:202–210

    Article  PubMed  Google Scholar 

  8. Thuret S, D.,Gage ML F. H (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7:628–643

    Article  CAS  PubMed  Google Scholar 

  9. Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, Choi D, Fehlings MG (2017) Traumatic Spinal Cord Injury-Repair and Regeneration. Neurosurgery 80:S9–s22

    Article  PubMed  Google Scholar 

  10. Santosh B, Varshney A, Yadava PK (2015) Non-coding RNAs: biological functions and applications. Cell Biochem Funct 33:14–22

    Article  CAS  PubMed  Google Scholar 

  11. Birney E, Stamatoyannopoulos JA, Dutta A et al. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

  12. Bagchi A (2018) Different roles of circular RNAs with protein coding potentials. Biochem Biophys Res Commun 500:907–909

    Article  CAS  PubMed  Google Scholar 

  13. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691

    Article  CAS  PubMed  Google Scholar 

  14. Barrett,Salzman SP J (2016) Circular RNAs: analysis, expression and potential functions. Development 143:1838–1847

    Article  PubMed  CAS  Google Scholar 

  15. Kristensen LS, Hansen TB, Venø MT, Kjems J (2018) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37:555–565

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Z, Yang T, Xiao J (2018) Circular RNAs: Promising Biomarkers for Human Diseases. EBioMedicine 34:267–274

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou ZB, Chen DuD, Deng KZ, Niu LF, Zhu YL L (2019) Differential Expression Profiles and Functional Predication of Circular Ribonucleic Acid in Traumatic Spinal Cord Injury of Rats. J Neurotrauma 36:2287–2297

    Article  PubMed  Google Scholar 

  18. Liu Y, Liu J, Liu B (2020) Identification of Circular RNA Expression Profiles and their Implication in Spinal Cord Injury Rats at the Immediate Phase. J Mol Neurosci 70:1894–1905

    Article  CAS  PubMed  Google Scholar 

  19. He R, Tang GL, Niu L, Ge C, Zhang XQ, Ji XF, Fang H, Luo ZL, Chen M, Shang XF (2020) Quietness Circ 0000962 promoted nerve cell inflammation through PIK3CA/Akt/NF-κB signaling by miR-302b-3p in spinal cord injury. Ann Palliat Med 9:190–198

    Article  PubMed  Google Scholar 

  20. Chen J, Fu B, Bao J, Su R, Zhao H, Liu Z (2021) Novel circular RNA 2960 contributes to secondary damage of spinal cord injury by sponging miRNA-124. J Comp Neurol 529:1456–1464

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Lou X, Xu S, Du J, Wu J (2020) Hypoxia inducible factor-1 (HIF-1α) reduced inflammation in spinal cord injury via miR-380-3p/ NLRP3 by Circ 0001723. Biol Res 53:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mathieu M, Martin-Jaular L, Lavieu G, Théry C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21:9–17

    Article  CAS  PubMed  Google Scholar 

  23. Pegtel,Gould DM S. J (2019) Exosomes Annu Rev Biochem 88:487–514

    Article  PubMed  CAS  Google Scholar 

  24. Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, Kolls J, Riches DW, Deiuliis G, Kaminski N, Boregowda SV, McKenna DH, Ortiz LA (2015) Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 6:8472

    Article  CAS  PubMed  Google Scholar 

  25. Long Q, Upadhya D, Hattiangady B, Kim DK, An SY, Shuai B, Prockop DJ, Shetty AK (2017) Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc Natl Acad Sci U S A 114:E3536–e3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B, Rajasingh J (2018) Exosomes: new molecular targets of diseases. Acta Pharmacol Sin 39:501–513

    Article  CAS  PubMed  Google Scholar 

  27. Simons,Raposo M G (2009) Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581

    Article  PubMed  CAS  Google Scholar 

  28. Yuan J, Botchway BOA, Zhang Y, Wang X, Liu X (2020) Role of Circular Ribonucleic Acids in the Treatment of Traumatic Brain and Spinal Cord Injury. Mol Neurobiol 57:4296–4304

    Article  CAS  PubMed  Google Scholar 

  29. Thomas,Sætrom LF P (2014) Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics 30:2243–2246

    Article  PubMed  CAS  Google Scholar 

  30. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  CAS  PubMed  Google Scholar 

  31. Peng P, Zhang B, Huang J, Xing C, Liu W, Sun C, Guo W, Yao S, Ruan W, Ning G, Kong X, Feng S (2020) Identification of a circRNA-miRNA-mRNA network to explore the effects of circRNAs on pathogenesis and treatment of spinal cord injury. Life Sci 257:118039

    Article  CAS  PubMed  Google Scholar 

  32. Wang W, Wang S, Zhang Z, Li J, Xie W, Su Y, Chen J, Liu L (2020) [Identification of potential traumatic spinal cord injury related circular RNA-microRNA networks by sequence analysis]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 34:213–219

    PubMed  Google Scholar 

  33. Zhao QC, Xu ZW, Peng QM, Zhou JH, Li ZY (2020) Enhancement of miR-16-5p on spinal cord injury-induced neuron apoptosis and inflammatory response through inactivating ERK1/2 pathway. J Neurosurg Sci

  34. Liu W, Wang Y, Gong F, Rong Y, Luo Y, Tang P, Zhou Z, Zhou Z, Xu T, Jiang T, Yang S, Yin G, Chen J, Fan J, Cai W (2019) Exosomes Derived from Bone Mesenchymal Stem Cells Repair Traumatic Spinal Cord Injury by Suppressing the Activation of A1 Neurotoxic Reactive Astrocytes. J Neurotrauma 36:469–484

    Article  PubMed  Google Scholar 

  35. Li L, Zhou TP, Wang Z, Xu Q, Zhao T, Huang S, Kong Y, Liu F, Cheng W, Zhou L, Zhao Z, Gu X, Luo C, Tao Y, Qian G, Chen D, Fan J, Yin J G (2019) GIT1 regulates angiogenic factor secretion in bone marrow mesenchymal stem cells via NF-κB/Notch signalling to promote angiogenesis. Cell Prolif 52:e12689

    PubMed  PubMed Central  Google Scholar 

  36. Zhang T, Gao G, Chang F (2019) miR-152 promotes spinal cord injury recovery via c-jun amino terminal kinase pathway. Eur Rev Med Pharmacol Sci 23:44–51

    CAS  PubMed  Google Scholar 

  37. Kalluri,LeBleu R (2020) V. S. The biology, function, and biomedical applications of exosomes. 367

  38. Liu W, Rong Y, Wang J, Zhou Z, Ge X, Ji C, Jiang D, Gong F, Li L, Chen J, Zhao S, Kong F, Gu C, Fan J, Cai W (2020) Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Neuroinflammation 17:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, Yuan W, Sun Z (2019) Exosomal circRNAs: biogenesis, effect and application in human diseases. 18:116

  40. Fanale D, Taverna S, Russo A, Bazan V (2018) Circular RNA in Exosomes. Adv Exp Med Biol 1087:109–117

    Article  CAS  PubMed  Google Scholar 

  41. Yuan J, Botchway BOA, Zhang Y, Wang X, Liu X (2020) Role of Circular Ribonucleic Acids in the Treatment of Traumatic Brain and Spinal Cord Injury. 57:4296–4304

  42. Kroner,Rosas Almanza A J (2019) Role of microglia in spinal cord injury. Neurosci Lett 709:134370

    Article  PubMed  CAS  Google Scholar 

  43. Bellver-Landete V, Mailhot BF, Vallières B, Lessard N, Janelle M, Vernoux ME, Tremblay N MÈ (2019) Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. 10:518

  44. Liu X, Huang S, Liu C, Liu X, Shen Y, Cui Z (2017) PPP1CC is associated with astrocyte and microglia proliferation after traumatic spinal cord injury in rats. Pathol Res Pract 213:1355–1364

    Article  CAS  PubMed  Google Scholar 

  45. Lv R, Du L, Zhang L, Zhang Z (2019) Polydatin attenuates spinal cord injury in rats by inhibiting oxidative stress and microglia apoptosis via Nrf2/HO-1 pathway. Life Sci 217:119–127

    Article  CAS  PubMed  Google Scholar 

  46. Liu Z, Yao X, Jiang W, Li W, Zhu S, Liao C, Zou L, Ding R, Chen J (2020) Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. 17:90

  47. Panda AC (2018) Circular RNAs Act as miRNA Sponges. Adv Exp Med Biol 1087:67–79

    Article  CAS  PubMed  Google Scholar 

  48. Wang N, He L, Yang Y, Li S, Chen Y, Tian Z, Ji Y, Wang Y, Pang M, Wang Y, Liu B, Rong L (2020) Integrated analysis of competing endogenous RNA (ceRNA) networks in subacute stage of spinal cord injury. Gene 726:144171

    Article  CAS  PubMed  Google Scholar 

  49. Zheng,Quirion WH R (2006) Insulin-like growth factor-1 (IGF-1) induces the activation/phosphorylation of Akt kinase and cAMP response element-binding protein (CREB) by activating different signaling pathways in PC12 cells. BMC Neurosci 7:51

    Article  PubMed  CAS  Google Scholar 

  50. Allahdadi KJ, de Santana TA, Santos GC, Azevedo CM, Mota RA, Nonaka CK, Silva DN, Valim CXR, Figueira CP, Dos Santos WLC, Espirito Santo RF, Evangelista AF, Villarreal CF, Dos Santos RR, de Souza BS F.,Soares M. B. P. (2019) IGF-1 overexpression improves mesenchymal stem cell survival and promotes neurological recovery after spinal cord injury. Stem Cell Res Ther 10:146

  51. Yao L, Guo Y, Wang L, Li G, Qian X, Zhang J, Liu H, Liu G (2021) Knockdown of miR-130a-3p alleviates spinal cord injury induced neuropathic pain by activating IGF-1/IGF-1R pathway. J Neuroimmunol 351:577458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Xia.

Ethics declarations

Disclosure of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, F., Yang, J. & Xia, R. Exosomes Secreted from circZFHX3-modified Mesenchymal Stem Cells Repaired Spinal Cord Injury Through mir-16-5p/IGF-1 in Mice. Neurochem Res 47, 2076–2089 (2022). https://doi.org/10.1007/s11064-022-03607-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03607-y

Keywords

Navigation