Skip to main content

Advertisement

Log in

Elevation of EGR1/zif268, a Neural Activity Marker, in the Auditory Cortex of Patients with Schizophrenia and its Animal Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The family of epidermal growth factor (EGF) including neuregulin-1 are implicated in the neuropathology of schizophrenia. We established a rat model of schizophrenia by exposing perinatal rats to EGF and reported that the auditory pathophysiological traits of this model such as prepulse inhibition, auditory steady-state response, and mismatch negativity are relevant to those of schizophrenia. We assessed the activation status of the auditory cortex in this model, as well as that in patients with schizophrenia, by monitoring the three neural activity-induced proteins: EGR1 (zif268), c-fos, and Arc. Among the activity markers, protein levels of EGR1 were significantly higher at the adult stage in EGF model rats than those in control rats. The group difference was observed despite an EGF model rat and a control rat being housed together, ruling out the contribution of rat vocalization effects. These changes in EGR1 levels were seen to be specific to the auditory cortex of this model. The increase in EGR1 levels were detectable at the juvenile stage and continued until old ages but displayed a peak immediately after puberty, whereas c-fos and Arc levels were nearly indistinguishable between groups at all ages with an exception of Arc decrease at the juvenile stage. A similar increase in EGR1 levels was observed in the postmortem superior temporal cortex of patients with schizophrenia. The commonality of the EGR1 increase indicates that the EGR1 elevation in the auditory cortex might be one of the molecular signatures of this animal model and schizophrenia associating with hallucination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Sommer IE, Slotema CW, Daskalakis ZJ, Derks EM, Blom JD, van der Gaag M (2012) The treatment of hallucinations in schizophrenia spectrum disorders. Schizophr Bull 38:704–714. https://doi.org/10.1093/schbul/sbs034

    Article  PubMed  PubMed Central  Google Scholar 

  2. Upthegrove R, Broome MR, Caldwell K, Ives J, Oyebode F, Wood SJ (2016) Understanding auditory verbal hallucinations: a systematic review of current evidence. Acta Psychiatr Scand 133:352–367. https://doi.org/10.1111/acps.12531

    Article  CAS  PubMed  Google Scholar 

  3. Tsang A, Bucci S, Branitsky A, Kaptan S, Rafiq S, Wong S, Berry K, Varese F (2021) The relationship between appraisals of voices (auditory verbal hallucinations) and distress in voice-hearers with schizophrenia-spectrum diagnoses: a meta-analytic review. Schizophr Res 230:38–47. https://doi.org/10.1016/j.schres.2021.02.013

    Article  PubMed  Google Scholar 

  4. Catani M, Craig MC, Forkel SJ, Kanaan R, Picchioni M, Toulopoulou T, Shergill S, Williams S, Murphy DG, McGuire P (2011) Altered integrity of Perisylvian language pathways in schizophrenia: relationship to auditory hallucinations. Biol Psychiatry 70:1143–1150. https://doi.org/10.1016/j.biopsych.2011.06.013

    Article  PubMed  Google Scholar 

  5. Chen C, Wang GH, Wu SH, Zou JL, Zhou Y, Wang HL (2020) Abnormal local activity and functional dysconnectivity in patients with schizophrenia having auditory verbal hallucinations. Curr Med Sci 40:979–984. https://doi.org/10.1007/s11596-020-2271-4

    Article  PubMed  Google Scholar 

  6. Ropohl A, Sperling W, Elstner S, Tomandl B, Reulbach U, Kaltenhäuser M, Kornhuber J, Maihöfner C (2004) Cortical activity associated with auditory hallucinations. NeuroReport 15:523–526. https://doi.org/10.1097/00001756-200403010-00028

    Article  PubMed  Google Scholar 

  7. Kasai K, Okazawa K, Nakagome K, Hiramatsu K, Hata A, Fukuda M, Honda M, Miyauchi M, Matsushita M (1999) Mismatch negativity and N2b attenuation as an indicator for dysfunction of the preattentive and controlled processing for deviance detection in schizophrenia: a topographic event-related potential study. Schizophr Res 35:141–156. https://doi.org/10.1016/s0920-9964(98)00116-9

    Article  CAS  PubMed  Google Scholar 

  8. de Weijer AD, Mandl RC, Diederen KM, Neggers SF, Kahn RS, Hulshoff Pol HE, Sommer IE (2011) Microstructural alterations of the arcuate fasciculus in schizophrenia patients with frequent auditory verbal hallucinations. Schizophr Res 130:68–77. https://doi.org/10.1016/j.schres.2011.05.010

    Article  PubMed  Google Scholar 

  9. Wolf ND, Sambataro F, Vasic N, Frasch K, Schmid M, Schönfeldt-Lecuona C, Thomann PA, Wolf RC (2011) Dysconnectivity of multiple resting-state networks in patients with schizophrenia who have persistent auditory verbal hallucinations. J Psychiatry Neurosci 36:366–374. https://doi.org/10.1503/jpn.110008

    Article  PubMed  PubMed Central  Google Scholar 

  10. Psomiades M, Fonteneau C, Mondino M, Luck D, Haesebaert F, Suaud-Chagny MF, Brunelin J (2016) Integrity of the arcuate fasciculus in patients with schizophrenia with auditory verbal hallucinations: a DTI-tractography study. Neuroimage Clin 12:970–975. https://doi.org/10.1016/j.nicl.2016.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  11. Woodruff PW, Wright IC, Bullmore ET, Brammer M, Howard RJ, Williams SC, Shapleske J, Rossell S, David AS, McGuire PK, Murray RM (1997) Auditory hallucinations and the temporal cortical response to speech in schizophrenia: a functional magnetic resonance imaging study. Am J Psychiatry 154:1676–1682. https://doi.org/10.1176/ajp.154.12.1676

    Article  CAS  PubMed  Google Scholar 

  12. Shergill SS, Brammer MJ, Williams SC, Murray RM, McGuire PK (2000) Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry 57:1033–1038. https://doi.org/10.1001/archpsyc.57.11.1033

    Article  CAS  PubMed  Google Scholar 

  13. Lennox BR, Park SB, Medley I, Morris PG, Jones PB (2000) The functional anatomy of auditory hallucinations in schizophrenia. Psychiatry Res 100:13–20. https://doi.org/10.1016/s0925-4927(00)00068-8

    Article  CAS  PubMed  Google Scholar 

  14. Seeman MV (2021) History of the dopamine hypothesis of antipsychotic action. World J Psychiatry 11:355–364. https://doi.org/10.5498/wjp.v11.i7.355

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schmidt MJ, Mirnics K (2015) Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 40:190–206. https://doi.org/10.1038/npp.2014.95

    Article  PubMed  Google Scholar 

  16. Weinberger DR (1996) On the plausibility of “the neurodevelopmental hypothesis” of schizophrenia. Neuropsychopharmacology 14:1s–11s. https://doi.org/10.1016/0893-133x(95)00199-n

    Article  CAS  PubMed  Google Scholar 

  17. Futamura T, Toyooka K, Iritani S, Niizato K, Nakamura R, Tsuchiya K, Someya T, Kakita A, Takahashi H, Nawa H (2002) Abnormal expression of epidermal growth factor and its receptor in the forebrain and serum of schizophrenic patients. Mol Psychiatry 7:673–682. https://doi.org/10.1038/sj.mp.4001081

    Article  CAS  PubMed  Google Scholar 

  18. Anttila S, Illi A, Kampman O, Mattila KM, Lehtimäki T, Leinonen E (2004) Association of EGF polymorphism with schizophrenia in Finnish men. NeuroReport 15:1215–1218. https://doi.org/10.1097/00001756-200405190-00027

    Article  CAS  PubMed  Google Scholar 

  19. Groenestege WM, Thébault S, van der Wijst J, van den Berg D, Janssen R, Tejpar S, van den Heuvel LP, van Cutsem E, Hoenderop JG, Knoers NV, Bindels RJ (2007) Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Investig 117:2260–2267. https://doi.org/10.1172/jci31680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nawa H, Sotoyama H, Iwakura Y, Takei N, Namba H (2014) Neuropathologic implication of peripheral neuregulin-1 and EGF signals in dopaminergic dysfunction and behavioral deficits relevant to schizophrenia: their target cells and time window. Biomed Res Int 2014:697935. https://doi.org/10.1155/2014/697935

    Article  PubMed  PubMed Central  Google Scholar 

  21. Namba H, Nagano T, Jodo E, Eifuku S, Horie M, Takebayashi H, Iwakura Y, Sotoyama H, Takei N, Nawa H (2017) Epidermal growth factor signals attenuate phenotypic and functional development of neocortical GABA neurons. J Neurochem 142:886–900. https://doi.org/10.1111/jnc.14097

    Article  CAS  PubMed  Google Scholar 

  22. Namba H, Nawa H (2020) Post-pubertal difference in nigral dopaminergic cells firing in the schizophrenia model prepared by perinatal challenges of a cytokine, EGF. Neuroscience 441:22–32. https://doi.org/10.1016/j.neuroscience.2020.06.003

    Article  CAS  PubMed  Google Scholar 

  23. Sotoyama H, Namba H, Kobayashi Y, Hasegawa T, Watanabe D, Nakatsukasa E, Sakimura K, Furuyashiki T, Nawa H (2021) Resting-state dopaminergic cell firing in the ventral tegmental area negatively regulates affiliative social interactions in a developmental animal model of schizophrenia. Transl Psychiatry 11:236. https://doi.org/10.1038/s41398-021-01346-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jodo E, Inaba H, Narihara I, Sotoyama H, Kitayama E, Yabe H, Namba H, Eifuku S, Nawa H (2019) Neonatal exposure to an inflammatory cytokine, epidermal growth factor, results in the deficits of mismatch negativity in rats. Sci Rep 9:7503. https://doi.org/10.1038/s41598-019-43923-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Narihara I, Kitajo K, Namba H, Sotoyama H, Inaba H, Watanabe D, Nawa H (2021) Rat call-evoked electrocorticographic responses and intercortical phase synchrony impaired in a cytokine-induced animal model for schizophrenia. Neurosci Res. https://doi.org/10.1016/j.neures.2021.10.007

    Article  PubMed  Google Scholar 

  26. Joo JY, Schaukowitch K, Farbiak L, Kilaru G, Kim TK (2016) Stimulus-specific combinatorial functionality of neuronal c-fos enhancers. Nat Neurosci 19:75–83. https://doi.org/10.1038/nn.4170

    Article  CAS  PubMed  Google Scholar 

  27. Clements KM, Wainwright PE (2010) Swim stress increases hippocampal Zif268 expression in the spontaneously hypertensive rat. Brain Res Bull 82:259–263. https://doi.org/10.1016/j.brainresbull.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  28. Haines D (2014) Internal morphology of the brain in unstained slices and MRI (9th edition). Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  29. Iwakura Y, Wang R, Inamura N, Araki K, Higashiyama S, Takei N, Nawa H (2017) Glutamate-dependent ectodomain shedding of neuregulin-1 type II precursors in rat forebrain neurons. PLoS ONE 12:e0174780. https://doi.org/10.1371/journal.pone.0174780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iwakura Y, Wang R, Abe Y, Piao YS, Shishido Y, Higashiyama S, Takei N, Nawa H (2011) Dopamine-dependent ectodomain shedding and release of epidermal growth factor in developing striatum: target-derived neurotrophic signaling (Part 2). J Neurochem 118:57–68. https://doi.org/10.1111/j.1471-4159.2011.07295

    Article  CAS  PubMed  Google Scholar 

  31. Brudzynski SM (2005) Principles of rat communication: quantitative parameters of ultrasonic calls in rats. Behav Genet 35:85–92. https://doi.org/10.1007/s10519-004-0858-3

    Article  PubMed  Google Scholar 

  32. Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV (2018) Immediate early genes, memory and psychiatric disorders: focus on c-Fos, Egr1 and Arc. Front Behav Neurosci 12:79. https://doi.org/10.3389/fnbeh.2018.00079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Okuno H, Akashi K, Ishii Y, Yagishita-Kyo N, Suzuki K, Nonaka M, Kawashima T, Fujii H, Takemoto-Kimura S, Abe M, Natsume R, Chowdhury S, Sakimura K, Worley PF, Bito H (2012) Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 149:886–898. https://doi.org/10.1016/j.cell.2012.02.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mikuni T, Uesaka N, Okuno H, Hirai H, Deisseroth K, Bito H, Kano M (2013) Arc/Arg3.1 is a postsynaptic mediator of activity-dependent synapse elimination in the developing cerebellum. Neuron 78:1024–1035. https://doi.org/10.1016/j.neuron.2013.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guzowski JF, Setlow B, Wagner EK, McGaugh JL (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21:5089–5098. https://doi.org/10.1523/jneurosci.21-14-05089.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Slattery DA, Morrow JA, Hudson AL, Hill DR, Nutt DJ, Henry B (2005) Comparison of alterations in c-fos and Egr-1 (zif268) expression throughout the rat brain following acute administration of different classes of antidepressant compounds. Neuropsychopharmacology 30:1278–1287. https://doi.org/10.1038/sj.npp.1300717

    Article  CAS  PubMed  Google Scholar 

  37. Lonergan ME, Gafford GM, Jarome TJ, Helmstetter FJ (2010) Time-dependent expression of Arc and zif268 after acquisition of fear conditioning. Neural Plast 2010:139891. https://doi.org/10.1155/2010/139891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eguchi M, Yamaguchi S (2009) In vivo and in vitro visualization of gene expression dynamics over extensive areas of the brain. Neuroimage 44:1274–1283. https://doi.org/10.1016/j.neuroimage.2008.10.046

    Article  PubMed  Google Scholar 

  39. Aydin-Abidin S, Trippe J, Funke K, Eysel UT, Benali A (2008) High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp Brain Res 188:249–261. https://doi.org/10.1007/s00221-008-1356-2

    Article  CAS  PubMed  Google Scholar 

  40. Gonzales BJ, Mukherjee D, Ashwal-Fluss R, Loewenstein Y, Citri A (2020) Subregion-specific rules govern the distribution of neuronal immediate-early gene induction. Proc Natl Acad Sci USA 117:23304–23310. https://doi.org/10.1073/pnas.1913658116

    Article  CAS  PubMed  Google Scholar 

  41. Sun A, Lin Y (2016) Npas4: linking neuronal activity to memory. Trends Neurosci 39(4):264–275. https://doi.org/10.1016/j.tins.2016.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shepard R, Heslin K, Hagerdorn P, Coutellier L (2019) Downregulation of Npas4 in parvalbumin interneurons and cognitive deficits after neonatal NMDA receptor blockade: relevance for schizophrenia. Transl Psychiatry 9(1):99. https://doi.org/10.1038/s41398-019-0436-3

    Article  PubMed  PubMed Central  Google Scholar 

  43. Worley PF, Christy BA, Nakabeppu Y, Bhat RV, Cole AJ, Baraban JM (1991) Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc Natl Acad Sci USA 88:5106–5110. https://doi.org/10.1073/pnas.88.12.5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beckmann AM, Davidson MS, Goodenough S, Wilce PA (1997) Differential expression of Egr-1-like DNA-binding activities in the naive rat brain and after excitatory stimulation. J Neurochem 69:2227–2237. https://doi.org/10.1046/j.1471-4159.1997.69062227.x

    Article  CAS  PubMed  Google Scholar 

  45. Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ (1995) Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64:477–505. https://doi.org/10.1016/0306-4522(94)00355-9

    Article  CAS  PubMed  Google Scholar 

  46. Wisden W, Errington ML, Williams S, Dunnett SB, Waters C, Hitchcock D, Evan G, Bliss TV, Hunt SP (1990) Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4:603–614. https://doi.org/10.1016/0896-6273(90)90118-y

    Article  CAS  PubMed  Google Scholar 

  47. Ivkovic S, Kanazir S, Rakic L, Ehrlich ME, Ruzdijic S (1997) Enhanced serum response element binding activity correlates with down-regulation of c-fos mRNA expression in the rat brain following repeated cortical lesions. Brain Res Mol Brain Res 52:62–70. https://doi.org/10.1016/s0169-328x(97)00222-2

    Article  CAS  PubMed  Google Scholar 

  48. Barry DN, Coogan AN, Commins N (2016) The time course of systems consolidation of spatial memory from recent to remote retention: a comparison of the Immediate early genes Zif268, c-Fos and Arc. Neurobiol Learn Mem 128:46–55. https://doi.org/10.1016/j.nlm.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  49. Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484(7394):381–385. https://doi.org/10.1038/nature11028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Denny CA, Kheirbek MA, Alba EL, Tanaka KF, Brachman RA, Laughman KB, Tomm NK, Turi GF, Losonczy A, Hen R (2014) Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 83(1):189–201. https://doi.org/10.1016/j.neuron.2014.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee JL, Hynds RE (2013) Divergent cellular pathways of hippocampal memory consolidation and reconsolidation. Hippocampus 23(3):233–244. https://doi.org/10.1002/hipo.22083

    Article  CAS  PubMed  Google Scholar 

  52. Campeau S, Dolan D, Watson SJ (2002) c-fos mRNA induction in acute and chronic audiogenic stress: possible role of the orbitofrontal cortex in habituation. Stress 5(2):121–130. https://doi.org/10.1080/10253890290027895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kimura A, Donishi T, Sakoda T, Hazama M, Tamai Y (2003) Auditory thalamic nuclei projections to the temporal cortex in the rat. Neuroscience 117:1003–1016. https://doi.org/10.1016/s0306-4522(02)00949-1

    Article  CAS  PubMed  Google Scholar 

  54. Svobodová Burianová J, Syka J (2020) Postnatal exposure to an acoustically enriched environment alters the morphology of neurons in the adult rat auditory system. Brain Struct Funct 225:1979–1995. https://doi.org/10.1007/s00429-020-02104-8

    Article  CAS  PubMed  Google Scholar 

  55. Yuan K, Fink KL, Winer JA, Schreiner CE (2011) Local connection patterns of parvalbumin-positive inhibitory interneurons in rat primary auditory cortex. Hear Res 274:121–128. https://doi.org/10.1016/j.heares.2010.06.014

    Article  CAS  PubMed  Google Scholar 

  56. Silbersweig D, Stern E (1996) Functional neuroimaging of hallucinations in schizophrenia: toward an integration of bottom-up and top-down approaches. Mol Psychiatry 1:367–375

    CAS  PubMed  Google Scholar 

  57. Gilbert CD, Sigman M (2007) Brain states: top-down influences in sensory processing. Neuron 54:677–696. https://doi.org/10.1016/j.neuron.2007.05.019

    Article  CAS  PubMed  Google Scholar 

  58. Sterzer P, Voss M, Schlagenhauf F, Heinz A (2019) Decision-making in schizophrenia: a predictive-coding perspective. Neuroimage 190:133–143. https://doi.org/10.1016/j.neuroimage.2018.05.074

    Article  PubMed  Google Scholar 

  59. Ramaker RC, Bowling KM, Lasseigne BN, Hagenauer MH, Hardigan AA, Davis NS, Gertz J, Cartagena PM, Walsh DM, Vawter MP, Jones EG, Schatzberg AF, Barchas JD, Watson SJ, Bunney BG, Akil H, Bunney WE, Li JZ, Cooper SJ, Myers RM (2017) Post-mortem molecular profiling of three psychiatric disorders. Genome Med 9(1):72. https://doi.org/10.1186/s13073-017-0458-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ananth J, Burgoyne KS, Gadasalli R, Aquino S (2001) How do the atypical antipsychotics work? J Psychiatry Neurosci 26:385–394

    CAS  PubMed  PubMed Central  Google Scholar 

  61. de Bartolomeis A, Buonaguro EF, Latte G, Rossi R, Marmo F, Iasevoli F, Tomasetti C (2017) Immediate-early genes modulation by antipsychotics: translational implications for a putative gateway to drug-induced long-term brain changes. Front Behav Neurosci 11:240. https://doi.org/10.3389/fnbeh.2017.00240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. MacGibbon GA, Lawlor PA, Bravo R, Dragunow M (1994) Clozapine and haloperidol produce a differential pattern of immediate early gene expression in rat caudate-putamen, nucleus accumbens, lateral septum and islands of Calleja. Brain Res Mol Brain Res 23:21–32. https://doi.org/10.1016/0169-328x(94)90207-0

    Article  CAS  PubMed  Google Scholar 

  63. Robertson GS, Fibiger HC (1996) Effects of olanzapine on regional c-fos expression in rat forebrain. Neuropsychopharmacology 14:105–110. https://doi.org/10.1016/0893-133x(95)00196-k

    Article  CAS  PubMed  Google Scholar 

  64. Ohashi K, Hamamura T, Lee Y, Fujiwara Y, Suzuki H, Kuroda S (2000) Clozapine- and olanzapine-induced Fos expression in the rat medial prefrontal cortex is mediated by beta-adrenoceptors. Neuropsychopharmacology 23:162–169. https://doi.org/10.1016/s0893-133x(00)00105-6

    Article  CAS  PubMed  Google Scholar 

  65. Verma V, Rasmussen K, Dawe GS (2006) Effects of short-term and chronic olanzapine treatment on immediate early gene protein and tyrosine hydroxylase immunoreactivity in the rat locus coeruleus and medial prefrontal cortex. Neuroscience 143:573–585. https://doi.org/10.1016/j.neuroscience.2006.08.010

    Article  CAS  PubMed  Google Scholar 

  66. Liu S, Zhang F, Shugart YY, Yang L, Li X, Liu Z, Sun N, Yang C, Guo X, Shi J, Wang L, Cheng L, Zhang K, Yang T, Xu Y (2017) The early growth response protein 1-miR-30a-5p-neurogenic differentiation factor 1 axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Transl Psychiatry 7:e998. https://doi.org/10.1038/tp.2016.268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yamada K, Gerber DJ, Iwayama Y, Ohnishi T, Ohba H, Toyota T, Aruga J, Minabe Y, Tonegawa S, Yoshikawa T (2007) Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia. Proc Natl Acad Sci USA 104:2815–2820. https://doi.org/10.1073/pnas.0610765104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kyosseva SV (2004) Differential expression of mitogen-activated protein kinases and immediate early genes fos and jun in thalamus in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 28:997–1006. https://doi.org/10.1016/j.pnpbp.2004.05.017

    Article  CAS  PubMed  Google Scholar 

  69. Millard SJ, Bearden CE, Karlsgodt KH, Sharpe MJ (2021) The prediction-error hypothesis of schizophrenia: new data point to circuit-specific changes in dopamine activity. Neuropsychopharmacology. https://doi.org/10.1038/41386-021-01188-y

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hoffman AN, Parga A, Paode PR, Watterson LR, Nikulina EM, Hammer RP Jr, Conrad CD (2015) Chronic stress enhanced fear memories are associated with increased amygdala zif268 mRNA expression and are resistant to reconsolidation. Neurobiol Learn Mem 120:61–68. https://doi.org/10.1016/j.nlm.2015.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu YH, Ou CY, Shyu BC, Huang ACW (2020) Basolateral amygdala but not medial prefrontal cortex contributes to chronic fluoxetine treatments for PTSD symptoms in mice. Behav Neurol 2020:8875087. https://doi.org/10.1155/2020/8875087

    Article  PubMed  PubMed Central  Google Scholar 

  72. Covington HE III, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, LaPlant Q, Mouson E, Ghose S, Taming CA, Neve RL, Deisseroth K, Nestler EJ (2010) Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci 30:16082–16090. https://doi.org/10.1523/JNEUROSCI.1731-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee RS, Hermens DF, Porter MA, Redoblado-Hodge MA (2012) A meta-analysis of cognitive deficits in first-episode major depressive disorder. J Affect Disord 140:113–124. https://doi.org/10.1016/j.jad.2011.10.023

    Article  PubMed  Google Scholar 

  74. Dierks T, Linden DE, Jandl M, Formisano E, Goebel R, Lanfermann H, Singer W (1999) Activation of Heschl’s gyrus during auditory hallucinations. Neuron 22(3):615–621. https://doi.org/10.1016/s0896-6273(00)80715-1

    Article  CAS  PubMed  Google Scholar 

  75. Shergill SS, Brammer MJ, Williams SC, McGuire PK (2000) Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry 57(11):1033–1038. https://doi.org/10.1001/archpsyc.57.11.1033

    Article  CAS  PubMed  Google Scholar 

  76. van de Ven VG, Formisano E, Röder CH, Prvulovic D, Bittner RA, Dietz DH, Dierks T, Federspiel A (2005) The spatiotemporal pattern of auditory cortical responses during verbal hallucinations. Neuroimage 27(3):644–655. https://doi.org/10.1016/j.neuroimage.2005.04.041

    Article  PubMed  Google Scholar 

  77. Northoff G (2014) Are auditory hallucinations related to the brain’s resting state activity? A ‘Neurophenomenal Resting State Hypothesis.’ Clin Psychopharmacol Neurosci 12(3):189–195. https://doi.org/10.9758/cpn.2014.12.3.189

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kompus K, Westerhausen R, Hugdahl K (2011) The “paradoxical” engagement of the primary auditory cortex in patients with auditory verbal hallucinations: a meta-analysis of functional neuroimaging studies. Neuropsychologia 49(12):3361–3369. https://doi.org/10.1016/j.neuropsychologia.2011.08.010

    Article  PubMed  Google Scholar 

  79. Salisbury DF, Kuroki N, Kasai K, Shenton ME, McCarley RW (2007) Progressive and interrelated functional and structural evidence of post-onset brain reduction in schizophrenia. Arch Gen Psychiatry 64:521–529. https://doi.org/10.1001/archpsyc.64.5.521

    Article  PubMed  PubMed Central  Google Scholar 

  80. Koshiyama D, Miyakoshi M, Joshi YB, Molina JL, Tanaka-Koshiyama K, Sprock J, Braff DL, Swerdlow NR, Light GA (2020) A distributed frontotemporal network underlies gamma-band synchronization impairments in schizophrenia patients. Neuropsychopharmacology 45(13):2198–2206. https://doi.org/10.1038/s41386-020-00806-5

    Article  PubMed  PubMed Central  Google Scholar 

  81. Grent-’t-Jong T, Gajwani R, Gross J, Gumley AI, Krishnadas R, Lawrie SM, Schwannauer M, Schultze-Lutter F, Uhlhaas PJ (2021) 40-Hz auditory steady-state responses characterize circuit dysfunctions and predict clinical outcomes in clinical high-risk for psychosis participants: a magnetoencephalography study. Biol Psychiatry 90(6):419–429. https://doi.org/10.1016/j.biopsych.2021.03.018

    Article  PubMed  Google Scholar 

  82. Teale P, Carlson J, Rojas D, Reite M (2003) Reduced laterality of the source locations for generators of the auditory steady-state field in schizophrenia. Biol Psychiatry 54(11):1149–1153. https://doi.org/10.1016/s0006-3223(03)00411-6

    Article  PubMed  Google Scholar 

  83. Curcic-Blake B, Liemburg E, Vercammen A, Swart M, Knegtering H, Bruggeman R, Aleman A (2013) When Broca goes uninformed: reduced information flow to Broca’s area in schizophrenia patients with auditory hallucinations. Schizophr Bull 39(5):1087–1095. https://doi.org/10.1093/schbul/sbs107

    Article  PubMed  Google Scholar 

  84. Kompus K, Falkenberg LE, Bless JJ, Johnsen E, Kroken RA, Kråkvik B, Larøi F, Løberg EM, Vedul-Kjelsås E, Westerhausen R, Hugdahl K (2013) The role of the primary auditory cortex in the neural mechanism of auditory verbal hallucinations. Front Hum Neurosci 24(7):144. https://doi.org/10.3389/fnhum.2013.00144

    Article  Google Scholar 

  85. Mørch-Johnsen L, Nesvåg R, Jørgensen KN, Lange EH, Hartberg CB, Haukvik UK, Kompus K, Westerhausen R, Osnes K, Andreassen OA, Melle I, Hugdahl K, Agartz I (2017) Auditory cortex characteristics in schizophrenia: associations with auditory hallucinations. Schizophr Bull 1:75–83. https://doi.org/10.1093/schbul/sbw130

    Article  Google Scholar 

  86. Parker EM, Sweet RA (2018) Stereological assessments of neuronal pathology in auditory cortex in schizophrenia. Front Neuroanat 11:131. https://doi.org/10.3389/fnana.2017.00131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Shunsuke Hasegawa for technical assistance with the experiments. This research was supported by Grant-in-Aid for Scientific Research on Innovative Areas (18H05429, H.N.) and for Challenging Research (21K18242, H.N.), the Japan Agency for Medical Research and Development (AMED, JP21wm0425019, A.K.), the Strategic Research Program for Brain Sciences from AMED (JP21wm0425019, H.Y. and JP21dm0207074, Y.K.), the Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (JP21H00180, Y.K.), the Grants-in-Aid for Scientific Research (C) (19K08053, Y.K.), the Ministry of Education, Culture, Sports, Science, and Technology Supported Program for the Strategic Research Foundation at Private Universities (S1311017, RK-M), and the Collaborative Research Project of Brain Research Institute, Niigata University (201917, Y.K.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YI, SK, TS and HN contributed to the study conception and design. YI, RK-M, and HS performed experiments. Materials were prepared or collected by RG, HT, YK, MH, AN, RI, RS, HY, AK. The first draft of the manuscript was written by YI and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuriko Iwakura.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwakura, Y., Kawahara-Miki, R., Kida, S. et al. Elevation of EGR1/zif268, a Neural Activity Marker, in the Auditory Cortex of Patients with Schizophrenia and its Animal Model. Neurochem Res 47, 2715–2727 (2022). https://doi.org/10.1007/s11064-022-03599-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03599-9

Keywords

Navigation