Skip to main content

Advertisement

Log in

Neuroprotection by Mucuna pruriens in Neurodegenerative Diseases

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The medicinal plant Mucuna pruriens (Fabaceae) is widely known for its anti-oxidative and anti-inflammatory properties. It is a well-established drug in Ayurveda and has been widely used for the treatment of neurological disorders and male infertility for ages. The seeds of the plant have potent medicinal value and its extract has been tested in different models of neurodegenerative diseases, especially Parkinson's disease (PD). Apart from PD, Mucuna pruriens is now being studied in models of other nervous systems disorders such as Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS) and stroke because of its neuroprotective importance. This review briefly discusses the pathogenesis of PD, AD, ALS and stroke. It aims to summarize the medicinal importance of Mucuna pruriens in treatment of these diseases, and put forward the potential targets where Mucuna pruriens can act for therapeutic interventions. In this review, the effect of Mucuna pruriens on ameliorating the neurodegeneration evident in PD, AD, ALS and stroke is briefly discussed. The potential targets for neuroprotection by the plant are delineated, which can be studied further to validate the hypothesis regarding the use of Mucuna pruriens for the treatment of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Mannangatti P, Naidu KN (2016) Indian herbs for the treatment of neurodegenerative disease. In: Essa Mohamed, Akbar Mohammed, Guillemin Gilles (eds) The Benefits of Natural Products for Neurodegenerative Diseases, M. Springer, Cham, pp 323–336

    Chapter  Google Scholar 

  2. Mishra LC (ed) (2003) Scientific basis for Ayurvedic therapies. Routledge, London

    Google Scholar 

  3. Pathania R, Chawla P, Khan H, Kaushik R, Khan MA (2020) An assessment of potential nutritive and medicinal properties of Mucuna pruriens: a natural food legume. 3 Biotech. 10:1–5

    Article  Google Scholar 

  4. Suresh S, Prithiviraj E, Lakshmi NV, Ganesh MK, Ganesh L, Prakash S (2013) Effect of Mucuna pruriens (Linn.) on mitochondrial dysfunction and DNA damage in epididymal sperm of streptozotocin induced diabetic rat. Journal of Ethnopharmacology. 145(1):32–41

    Article  PubMed  Google Scholar 

  5. Duke JA (2008) Duke’s handbook of medicinal plants of Latin America. CRC Press, London

    Book  Google Scholar 

  6. Jayaweera DM (1982) Medicinal plants used in Ceylon Part 3(442):161

    Google Scholar 

  7. Sathiyanarayanan L, Arulmozhi S (2007) Mucuna pruriens Linn.- a comprehensive review. Pharmacognosy Rev 1(1):157–162

    CAS  Google Scholar 

  8. Bhaskar A, Nithya V, Vidhya VG (2011) Phytochemical evaluation by GC-MS and antihyperglycemic activity of Mucuna pruriens on streptozotocin induced diabetes in rats. J Chem Pharm Res 3(5):689–696

    CAS  Google Scholar 

  9. Rakesh B, Praveen N. Chapter-10 biotechnological approaches for the production of l-DOPA: a novel and potent anti-Parkinson’s drug from Mucuna pruriens (L.) DC. Chief Editor. 2020;179.

  10. Amin KY, Khan MN, Zillur-Rehman S, Khan NA (1996) Sexual function improving effect of Mucuna pruriens in sexually normal male rats. Fitoterapia (Milano). 67(1):53–8

    Google Scholar 

  11. Adepoju GK, Odubena OO (2009) Effect of Mucuna pruriens on some haematological and biochemical parameters. J Med Plants Res 3(2):73–76

    Google Scholar 

  12. Yadav SK, Prakash J, Chouhan S, Singh SP (2013) Mucuna pruriens seed extract reduces oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in paraquat-induced Parkinsonian mouse model. Neurochem Int 62(8):1039–1047

    Article  CAS  PubMed  Google Scholar 

  13. Dhanasekaran M, Tharakan B, Manyam BV (2008) Antiparkinson drug–Mucuna pruriens shows antioxidant and metal chelating activity. Phytother Res 22(1):6–11

    Article  CAS  PubMed  Google Scholar 

  14. Pushpalatha B, Venumadhav N, Swathi M, Raju BA (2013) Neuroprotective effect of resveratrol against scopolamine-induced cognitive impairment and oxidative stress in rats. Arch Biol Sci 65(4):1381–1386

    Article  Google Scholar 

  15. Fothergill-Misbah N, Maroo H, Cham M, Pezzoli G, Walker R, Cilia R (2020) Could Mucuna pruriens be the answer to Parkinson’s disease management in sub-Saharan Africa and other low-income countries worldwide? Parkinsonism Relat Disord 1(73):3–7

    Article  Google Scholar 

  16. Diamond SG, Marchkham CH, Hoehn MM, McDowell FH, Muenter MD (1987) Multi-center study of Parkinson mortality with early versus later dopa treatment. Ann Neurol 22(1):8–12

    Article  CAS  PubMed  Google Scholar 

  17. Rai SN, Birla H, Singh SS, Zahra W, Patil RR, Jadhav JP, Gedda MR, Singh SP (2017) Mucuna pruriens protects against MPTP intoxicated neuroinflammation in Parkinson’s disease through NF-κB/pAKT signaling pathways. Front Aging Neurosci 19(9):421

    Article  CAS  Google Scholar 

  18. Rai SN, Birla H, Zahra W, Singh SS, Singh SP (2017) Immunomodulation of Parkinson’s disease using Mucuna pruriens (Mp). J Chem Neuroanat 1(85):27–35

    Article  Google Scholar 

  19. Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK (2019) Plant extracts and phytochemicals targeting α-synuclein aggregation in Parkinson’s disease models. Front Pharmacol 19(9):1555

    Article  CAS  Google Scholar 

  20. Rasheed MS, Tripathi MK, Mishra AK, Shukla S, Singh MP (2016) Resveratrol protects from toxin-induced parkinsonism: plethora of proofs hitherto petty translational value. Molecular neurobiology. 53(5):2751–60

    Article  CAS  Google Scholar 

  21. Gelders G, Baekelandt V, Van der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018:1–12

    Article  CAS  Google Scholar 

  22. Ghiglieri V, Calabrese V, Calabresi P (2018) Alpha-synuclein: from early synaptic dysfunction to neurodegeneration. Front Neurol 4(9):295

    Article  Google Scholar 

  23. Hu Q, Wang G (2016) Mitochondrial dysfunction in Parkinson’s disease. Transl Neurodegen 5(1):1–8

    Article  CAS  Google Scholar 

  24. McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin–proteasome system in Parkinson’s disease. Nat Rev Neurosci 2(8):589–594

    Article  CAS  PubMed  Google Scholar 

  25. Rao RV, Bredesen DE (2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol 16(6):653–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Olson KE, Gendelman HE (2016) Immunomodulation as a neuroprotective and therapeutic strategy for Parkinson’s disease. Curr Opin Pharmacol 1(26):87–95

    Article  CAS  Google Scholar 

  27. Shih RH, Wang CY, Yang CM (2015) NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 18(8):77

    Google Scholar 

  28. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69

    Article  CAS  PubMed  Google Scholar 

  29. Suzumura A, Takeuchi H, Zhang G, Kuno R, Mizuno T (2006) Roles of glia-derived cytokines on neuronal degeneration and regeneration. Ann N Y Acad Sci 1088(1):219–229

    Article  CAS  PubMed  Google Scholar 

  30. Shahidi F (2000) Antioxidants in food and food antioxidants. Food Nahrung 44(3):158–163

    Article  CAS  PubMed  Google Scholar 

  31. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S (2001) Green tea polyphenol (–)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78(5):1073–1082

    Article  CAS  PubMed  Google Scholar 

  32. de Carvalho MC, Barca FN, Agnez-Lima LF, de Medeiros SR (2003) Evaluation of mutagenic activity in an extract of pepper tree stem bark (Schinus terebinthifolius Raddi). Environ Mol Mutagen 42(3):185–191

    Article  PubMed  CAS  Google Scholar 

  33. Ferreira-Machado SC, Rodrigues MP, Nunes AP, Dantas FJ, De Mattos JC, Silva CR, Moura EG, Bezerra RJ, Caldeira-de-Araujo A (2004) Genotoxic potentiality of aqueous extract prepared from Chrysobalanus icaco L. leaves. Toxicol Lett 151(3):481–7

    Article  CAS  PubMed  Google Scholar 

  34. Manyam BV, Dhanasekaran M, Hare TA (2004) Effect of antiparkinson drug HP-200 (Mucuna pruriens) on the central monoaminergic neurotransmitters. Phytother Res 18(2):97–101

    Article  PubMed  Google Scholar 

  35. Kim WS, Kågedal K, Halliday GM (2014) Alpha-synuclein biology in Lewy body diseases. Alzheimer’s Res Ther 6(5):1–9

    Google Scholar 

  36. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kum WF, Durairajan SS, Bian ZX, Man SC, Lam YC, Xie LX, Lu JH, Wang Y, Huang XZ, Li M (2011) Treatment of idiopathic Parkinson’s disease with traditional Chinese herbal medicine: a randomized placebo-controlled pilot clinical study. Evidence-Based Complementary Alternative Med 1:2011

    Google Scholar 

  38. Amer DA, Irvine GB, El-Agnaf OM (2006) Inhibitors of α-synuclein oligomerization and toxicity: a future therapeutic strategy for Parkinson’s disease and related disorders. Exp Brain Res 173(2):223–233

    Article  CAS  PubMed  Google Scholar 

  39. Vassallo N (2008) Polyphenols and health: new and recent advances. Nova Publishers, New York

    Google Scholar 

  40. Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15(6):558

    Article  CAS  PubMed  Google Scholar 

  41. Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE (2010) EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc Natl Acad Sci 107(17):7710–7715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL (2004) The flavonoid baicalein inhibits fibrillation of α-synuclein and disaggregates existing fibrils. J Biol Chem 279(26):26846–26857

    Article  CAS  PubMed  Google Scholar 

  43. Rao JN, Dua V, Ulmer TS (2008) Characterization of α-synuclein interactions with selected aggregation-inhibiting small molecules. Biochemistry 47(16):4651–4656

    Article  CAS  PubMed  Google Scholar 

  44. Ono K, Yamada M (2006) Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for α-synuclein fibrils in vitro. J Neurochem 97(1):105–115

    Article  CAS  PubMed  Google Scholar 

  45. Masuda M, Suzuki N, Taniguchi S, Oikawa T, Nonaka T, Iwatsubo T, Hisanaga SI, Goedert M, Hasegawa M (2006) Small molecule inhibitors of α-synuclein filament assembly. Biochemistry 45(19):6085–6094

    Article  CAS  PubMed  Google Scholar 

  46. Hong DP, Fink AL, Uversky VN (2008) Structural characteristics of α-synuclein oligomers stabilized by the flavonoid baicalein. J Mol Biol 383(1):214–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meng X, Munishkina LA, Fink AL, Uversky VN (2009) Molecular mechanisms underlying the flavonoid-induced inhibition of α-synuclein fibrillation. Biochemistry 48(34):8206–8224

    Article  CAS  PubMed  Google Scholar 

  48. Ren R, Shi C, Cao J, Sun Y, Zhao X, Guo Y, Wang C, Lei H, Jiang H, Ablat N, Xu J (2016) Neuroprotective effects of a standardized flavonoid extract of safflower against neurotoxin-induced cellular and animal models of Parkinson’s disease. Sci Rep 6(1):1–3

    CAS  Google Scholar 

  49. Cheon SM, Jang I, Lee MH, Kim DK, Jeon H, Cha DS (2017) Sorbus alnifolia protects dopaminergic neurodegeneration in Caenorhabditis elegans. Pharm Biol 55(1):481–486

    Article  PubMed  Google Scholar 

  50. Briffa M, Ghio S, Neuner J, Gauci AJ, Cacciottolo R, Marchal C, Caruana M, Cullin C, Vassallo N, Cauchi RJ (2017) Extracts from two ubiquitous Mediterranean plants ameliorate cellular and animal models of neurodegenerative proteinopathies. Neurosci Lett 18(638):12–20

    Article  CAS  Google Scholar 

  51. Caruana M, Högen T, Levin J, Hillmer A, Giese A, Vassallo N (2011) Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Lett 585(8):1113–1120

    Article  CAS  PubMed  Google Scholar 

  52. Hussain G, Manyam BV (1997) Mucuna pruriens proves more effective than L-DOPA in Parkinson’s disease animal model. Phytother Res 11:419–423

    Article  CAS  Google Scholar 

  53. Yadav SK, Rai SN, Singh SP (2017) Mucuna pruriens reduces inducible nitric oxide synthase expression in Parkinsonian mice model. J Chem Neuroanat 1(80):1

    Article  CAS  Google Scholar 

  54. Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B 827(1):65–75

    Article  CAS  Google Scholar 

  55. Modi KP, Patel NM, Goyal RK (2008) Estimation of L-Dopa from Mucuna pruriens L INN and formulations containing M. pruriens by HPTLC Method. Chem Pharm Bull 56(3):357–9

    Article  CAS  Google Scholar 

  56. Prakash A, Niranjan SK, Tewari D (2001) Some nutritional properties of the seeds of three Mucuna species. Int J Food Sci Nutr 52(1):79–82

    Article  CAS  PubMed  Google Scholar 

  57. Ghosal S, Singh S, Bhattacharya SK (1971) Alkaloids of Mucuna pruriens chemistry and pharmacology. Planta Med 19(01):279–284

    Article  CAS  Google Scholar 

  58. Kumar A, Ahmad I, Shukla S, Singh BK, Patel DK, Pandey HP, Singh C (2010) Effect of zinc and paraquat co-exposure on neurodegeneration: modulation of oxidative stress and expression of metallothioneins, toxicant responsive and transporter genes in rats. Free Radical Res 44(8):950–965

    Article  CAS  Google Scholar 

  59. Yadav SK, Prakash J, Chouhan S, Westfall S, Verma M, Singh TD, Singh SP (2014) Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice model. Neurochem Int 1(65):1–3

    Article  CAS  Google Scholar 

  60. Manyam BV, Dhanasekaran M, Hare TA (2004) Neuroprotective effects of the antiparkinson drug Mucuna pruriens. Phytother Res 18(9):706–712

    Article  PubMed  Google Scholar 

  61. Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, Timmermann L, Van der Giessen R, Lees AJ (2004) Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psych 75(12):1672–1677

    Article  CAS  Google Scholar 

  62. Prakash J, Yadav SK, Chouhan S, Prakash S, Singh SP (2013) Synergistic effect of Mucuna pruriens and Withania somnifera in a paraquat induced Parkinsonian mouse model. Adv Biosci Biotechnol 4(11):1

    Article  CAS  Google Scholar 

  63. Lieu CA, Kunselman AR, Manyam BV, Venkiteswaran K, Subramanian T (2010) A water extract of Mucuna pruriens provides long-term amelioration of parkinsonism with reduced risk for dyskinesias. Parkinsonism Relat Disord 16(7):458–465

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lieu CA, Venkiteswaran K, Gilmour TP, Rao AN, Petticoffer AC, Gilbert EV, Deogaonkar M, Manyam BV, Subramanian T (2012) The antiparkinsonian and antidyskinetic mechanisms of Mucuna pruriens in the MPTP-treated nonhuman primate. Evidence-Based Complementary Alternative Med 1:2012

    Google Scholar 

  65. Uhegbu FO, Elekwa IF, Ukoha C (2005) Comparative efficacy of crude aqueous extract of Mangiferea Indica, Carica Papaya and Sulphadoxine Pyrimethamine on mice infested with malaria parasite in vivo. Global J Pure Appl Sci 11(3):74–76

    Google Scholar 

  66. Nagashayana N, Sankarankutty P, Nampoothiri MR, Mohan PK, Mohanakumar KP (2000) Association of L-DOPA with recovery following Ayurveda medication in Parkinson’s disease. J Neurol Sci 176(2):124–127

    Article  CAS  PubMed  Google Scholar 

  67. Mohapatra S, Ganguly P, Singh R, Katiyar CK (2020) Estimation of Levodopa in the Unani Drug Mucuna pruriens Bak. and its marketed formulation by high-performance thin-layer chromatographic technique. J AOAC Int. 103(3):678–83

    Article  PubMed  Google Scholar 

  68. Saranya G, Jiby MV, Jayakumar KS, Pillai PP, Jayabaskaran C (2020) L-DOPA synthesis in Mucuna pruriens (L.) DC. is regulated by polyphenol oxidase and not CYP 450/tyrosine hydroxylase: an analysis of metabolic pathway using biochemical and molecular markers. Phytochemistry. 178:112467

    Article  CAS  PubMed  Google Scholar 

  69. Yadav SK, Rai SN, Singh SP (2016) Mucuna pruriens shows neuroprotective effect by inhibiting apoptotic pathways of dopaminergic neurons in the paraquat mouse model of parkinsonism. Eur J Pharmaceut Med Res 3:441–451

    Google Scholar 

  70. Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS, Singh BK, Singh SP (2019) The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox Res 35(3):775–795

    Article  CAS  PubMed  Google Scholar 

  71. Rai SN, Yadav SK, Singh D, Singh SP (2016) Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model. J Chem Neuroanat 1(71):41–49

    Article  CAS  Google Scholar 

  72. Rai SN, Zahra W, Singh SS, Birla H, Keswani C, Dilnashin H, Rathore AS, Singh R, Singh RK, Singh SP (2019) Anti-inflammatory activity of ursolic acid in MPTP-induced parkinsonian mouse model. Neurotox Res 36(3):452–462

    Article  CAS  PubMed  Google Scholar 

  73. Zahra W, Rai SN, Birla H, Singh SS, Rathore AS, Dilnashin H, Singh R, Keswani C, Singh RK, Singh SP (2020) Neuroprotection of rotenone-induced Parkinsonism by ursolic acid in PD mouse model. CNS Neurol Disord-Drug Targets 19(7):527–540

    Article  CAS  PubMed  Google Scholar 

  74. Adi YK, Widayanti R, Pangestiningsih TW (2018) n-Propanol extract of boiled and fermented koro benguk (Mucuna pruriens seed) shows a neuroprotective effect in paraquat dichloride-induced Parkinson’s disease rat model. Vet world 11(9):1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Poddighe S, De Rose F, Marotta R, Ruffilli R, Fanti M, Secci PP, Mostallino MC, Setzu MD, Zuncheddu MA, Collu I, Solla P (2014) Mucuna pruriens (velvet bean) rescues motor, olfactory, mitochondrial and synaptic impairment in PINK1 B9 drosophila melanogaster genetic model of Parkinson’s disease. PLoS One. 9(10):e110802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Solari P, Maccioni R, Marotta R, Catelani T, Debellis D, Baroli B, Peddio S, Muroni P, Kasture S, Solla P, Stoffolano JG Jr (2018) The imbalance of serotonergic circuitry impairing the crop supercontractile muscle activity and the mitochondrial morphology of PD PINK1B9 Drosophila melanogaster are rescued by Mucuna pruriens. J Insect Physiol 1(111):32–40

    Article  CAS  Google Scholar 

  77. Johnson SL, Park HY, DaSilva NA, Vattem DA, Ma H, Seeram NP (2018) Levodopa-reduced Mucuna pruriens seed extract shows neuroprotective effects against Parkinson’s disease in murine microglia and human neuroblastoma cells, Caenorhabditis elegans, and Drosophila melanogaster. Nutrients 10(9):1139

    Article  PubMed Central  CAS  Google Scholar 

  78. Cilia R, Laguna J, Cassani E, Cereda E, Raspini B, Barichella M, Pezzoli G (2018) Daily intake of Mucuna pruriens in advanced Parkinson’s disease: a 16-week, noninferiority, randomized, crossover, pilot study. Parkinsonism Relat Disord 1(49):60–66

    Article  Google Scholar 

  79. Liu W, Ma H, DaSilva NA, Rose KN, Johnson SL, Zhang L, Wan C, Dain JA, Seeram NP (2016) Development of a neuroprotective potential algorithm for medicinal plants. Neurochem Int 1(100):164–177

    Article  CAS  Google Scholar 

  80. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25(34):7709–7717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ittner LM, Götz J (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):67–72

    Article  CAS  Google Scholar 

  82. Alzheimer’s Association (2015) 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 11(3):332–384

    Article  Google Scholar 

  83. Citron M (2010) Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 9(5):387–398

    Article  CAS  PubMed  Google Scholar 

  84. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C (2014) Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 13(8):788–794

    Article  PubMed  Google Scholar 

  85. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795

    Article  CAS  PubMed  Google Scholar 

  87. Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G (2000) Oxidative stress in Alzheimer’s disease. Biochim et Biophys Acta 1502(1):139–44

    Article  CAS  Google Scholar 

  88. Christen Y (2000) Oxidative stress and Alzheimer disease. Am J Clin Nutr 71(2):621S-S629

    Article  CAS  PubMed  Google Scholar 

  89. Choi DY, Lee YJ, Hong JT, Lee HJ (2012) Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res Bull 87(2–3):144–153

    Article  CAS  PubMed  Google Scholar 

  90. Palop JJ, Mucke L (2010) Amyloid-β–induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13(7):812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330(6012):1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li XH, Du LL, Cheng XS, Jiang X, Zhang Y, Lv BL, Liu R, Wang JZ, Zhou XW (2013) Glycation exacerbates the neuronal toxicity of β-amyloid. Cell Death Dis 4(6):e673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, Münch G (2011) Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol Aging 32(5):763–777

    Article  CAS  PubMed  Google Scholar 

  94. Donahue JE, Flaherty SL, Johanson CE, Duncan JA, Silverberg GD, Miller MC, Tavares R, Yang W, Wu Q, Sabo E, Hovanesian V (2006) RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol 112(4):405–415

    Article  CAS  PubMed  Google Scholar 

  95. Ahmed A, Subaiea M, Eid A, Li L, Seeram P, Zawia H (2014) Pomegranate extract modulates processing of amyloid-β precursor protein in an aged Alzheimer’s disease animal model. Curr Alzheimer Res 11(9):834–43

    CAS  PubMed  Google Scholar 

  96. Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ (2006) The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 113(11):1685

    Article  CAS  PubMed  Google Scholar 

  97. Chandra V, Pandav R, Dodge HH, Johnston JM, Belle SH, DeKosky ST, Ganguli M (2001) Incidence of Alzheimer’s disease in a rural community in India: the Indo–US study. Neurology 57(6):985–989

    Article  CAS  PubMed  Google Scholar 

  98. Yuan T, Ma H, Liu W, Niesen DB, Shah N, Crews R, Rose KN, Vattem DA, Seeram NP (2016) Pomegranate’s neuroprotective effects against Alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites. ACS Chem Neurosci 7(1):26–33

    Article  CAS  PubMed  Google Scholar 

  99. Ashwlayan VD, Singh RA (2011) Reversal effect of Phyllanthus emblica (Euphorbiaceae) Rasayana on memory deficits in mice. Int J Appl Pharm 3:10–15

    Google Scholar 

  100. Rachsee A, Chiranthanut N, Kunnaja P, Sireeratawong S, Khonsung P, Chansakaow S, Panthong A (2021) Mucuna pruriens (L.) DC. seed extract inhibit lipopolysaccharide-induced inflammatory responses in BV2 microglial cells. J Ethnopharmacol 267:113518

    Article  CAS  PubMed  Google Scholar 

  101. Nayak VS, Kumar N, D’Souza AS, Nayak SS, Cheruku SP, Pai KS (2017) The effects of Mucuna pruriens extract on histopathological and biochemical features in the rat model of ischemia. NeuroReport 28(18):1195–1201

    Article  PubMed  Google Scholar 

  102. Rai SN, Chaturvedi VK, Singh P, Singh BK, Singh MP (2020) Mucuna pruriens in Parkinson’s and in some other diseases: recent advancement and future prospective. 3 Biotech. 10(12):1–1

    Article  Google Scholar 

  103. De Rose F, Marotta R, Talani G, Catelani T, Solari P, Poddighe S, Borghero G, Marrosu F, Sanna E, Kasture S, Acquas E (2017) Differential effects of phytotherapic preparations in the hSOD1 Drosophila melanogaster model of ALS. Sci Rep 7(1):1–2

    CAS  Google Scholar 

  104. Boillée S, Velde CV, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52(1):39–59

    Article  PubMed  CAS  Google Scholar 

  105. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264(5166):1772–1775

    Article  CAS  PubMed  Google Scholar 

  106. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783

    Article  CAS  PubMed  Google Scholar 

  107. Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 21(27):723–749

    Article  CAS  Google Scholar 

  108. Silverman JM, Fernando SM, Grad LI, Hill AF, Turner BJ, Yerbury JJ, Cashman NR (2016) Disease mechanisms in ALS: misfolded SOD1 transferred through exosome-dependent and exosome-independent pathways. Cell Mol Neurobiol 36(3):377–381

    Article  CAS  PubMed  Google Scholar 

  109. Poddighe S, Bhat KM, Setzu MD, Solla P, Angioy AM, Marotta R, Ruffilli R, Marrosu F, Liscia A (2013) Impaired sense of smell in a Drosophila Parkinson’s model. PLoS One. 8(8):e73156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lu B, Vogel H (2009) Drosophila models of neurodegenerative diseases. Annu Rev Pathol 28(4):315–342

    Article  CAS  Google Scholar 

  111. Kasture S, Mohan M, Kasture V (2013) Mucuna pruriens seeds in treatment of Parkinson’s disease: pharmacological review. Orient Pharm Exp Med 13(3):165–174

    Article  Google Scholar 

  112. Maccioni R, Setzu MD, Talani G, Solari P, Kasture A, Sucic S, Porru S, Muroni P, Sanna E, Kasture S, Acquas E (2018) Standardized phytotherapic extracts rescue anomalous locomotion and electrophysiological responses of TDP-43 Drosophila melanogaster model of ALS. Sci Rep 8(1):1

    Article  CAS  Google Scholar 

  113. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351(3):602–611

    Article  CAS  PubMed  Google Scholar 

  114. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133

    Article  CAS  PubMed  Google Scholar 

  115. Bose JK, Huang CC, Shen CK (2011) Regulation of autophagy by neuropathological protein TDP-43. J Biol Chem 286(52):44441–44448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Diaper DC, Adachi Y, Sutcliffe B, Humphrey DM, Elliott CJ, Stepto A, Ludlow ZN, Vanden Broeck L, Callaerts P, Dermaut B, Al-Chalabi A (2013) Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes. Hum Mol Genet 22(8):1539–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cragnaz L, Klima R, De Conti L, Romano G, Feiguin F, Buratti E, Baralle M, Baralle FE (2015) An age-related reduction of brain TBPH/TDP-43 levels precedes the onset of locomotion defects in a Drosophila ALS model. Neuroscience 17(311):415–421

    Article  CAS  Google Scholar 

  118. Feiguin F, Godena VK, Romano G, D’ambrogio A, Klima R, Baralle FE (2009) Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett 583(10):1586–1592

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

WZ, HB, SSS, ASR, HD, RS, and PK are sincerely thankful to BHU, DBT, ICMR, CSIR India, for their respective fellowship. The authors would also like to thanks and acknowledge Ms. Jenan Husain, Graduate student, Neuroscience graduate program, University of Vermont, USA for assistance in English language correction.

Funding

The present study was not supported by any funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

WZ planned the review and drafted the manuscript; HB, SSS, ASR, HD, RS & PKK helped in the manuscript preparation, designed and drawn the figures; and SPS guided throughout the manuscript.

Corresponding author

Correspondence to Surya Pratap Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interests.

Consent for Publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahra, W., Birla, H., Singh, S.S. et al. Neuroprotection by Mucuna pruriens in Neurodegenerative Diseases. Neurochem Res 47, 1816–1829 (2022). https://doi.org/10.1007/s11064-022-03591-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03591-3

Keywords

Navigation