Skip to main content

Advertisement

Log in

Neural Differentiation of Human-Induced Pluripotent Stem Cells (hiPSc) on Surface-Modified Nanofibrous Scaffolds Coated with Platelet-Rich Plasma

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The field of tissue engineering exploits living cells in a variety of ways to restore, maintain, or enhance tissues and organs. Between stem cells, human induced pluripotent stem cells (hiPSCs), are very important due to their wide abilities. Growth factors can support proliferation, differentiation, and migration of hiPSCs. Platelet-rich plasma (PRP) could be used as the source of growth factors for hiPSCs. In the present study, proliferation and neural differentiation of hiPSCs on surface-modified nanofibrous Poly-l-lactic acid (PLLA) coated with platelet-rich plasma was investigated. The results of in vitro analysis showed that on the surface, which was modified nanofibrous scaffolds coated with platelet-rich plasma, significantly enhanced hiPSCs proliferation and neural differentiation were observed. Whereas the MTT ([3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide]) results showed biocompatibility of surface-modified nanofibrous scaffolds coated with platelet-rich plasma and the usage of these modified nanoscaffolds in neural tissue engineering in vivo is promising for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Tresco PA (2000) Tissue engineering strategies for nervous system repair. Prog Brain Res 128:349

    Article  CAS  PubMed  Google Scholar 

  2. Stoica BA, Byrnes KR, Faden AI (2009) Cell cycle activation and CNS injury. Neurotox Res 16(3):221–237

    Article  PubMed  Google Scholar 

  3. Dahlin L (2008) Techniques of peripheral nerve repair. Scand J Surg 97(4):310–316

    Article  CAS  PubMed  Google Scholar 

  4. Cao Q, Benton RL, Whittemore SR (2002) Stem cell repair of central nervous system injury. J Neurosci Res 68(5):501–510

    Article  CAS  PubMed  Google Scholar 

  5. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32–S34

    Article  Google Scholar 

  6. Donaghue IE et al (2014) Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system. J Control Release 190:219–227

    Article  CAS  Google Scholar 

  7. Stadtfeld M, Hochedlinger K (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24(20):2239–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pfannkuche K et al (2010) Induced pluripotent stem cells: a new approach for physiological research. Cell Physiol Biochem 26(2):105–124

    Article  CAS  PubMed  Google Scholar 

  9. Kim C (2014) Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application. Blood Res 49(1):7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Israel MA et al (2012) Probing sporadic and familial Alzheimer/’s disease using induced pluripotent stem cells. Nature 482(7384):216–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soldner F et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang N, et al (2010) Characterization of human Huntington’s disease cell model from induced pluripotent stem cells. PLOS Curr Huntingt Dis

  13. Yang J et al (2010) Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J Biol Chem 285(51):40303–40311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murray A et al (2015) Brief report: isogenic induced pluripotent stem cell lines from an adult with mosaic down syndrome model accelerated neuronal ageing and neurodegeneration. Stem Cells 33(6):2077–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu B-Y et al (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci 107(9):4335–4340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ho SM, Topol A, Brennand KJ (2015) From" directed differentiation" to" neuronal induction": modeling neuropsychiatric disease. Biomark Insights 2015(Suppl. 1):31

  17. Ogawa Y et al (2013) Impaired neural differentiation of induced pluripotent stem cells generated from a mouse model of Sandhoff disease. PLoS ONE 8(1):e55856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blakeney BA et al (2011) Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials 32(6):1583–1590

    Article  CAS  PubMed  Google Scholar 

  19. Mansourizadeh F, Oryan S, Dodel M, Asghari-vostakolaei M (2013) PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering. Mol Biol Res Commun 2:1–10

    Google Scholar 

  20. Griffith LG, Naughton G (2002) Tissue engineering–current challenges and expanding opportunities. Science 295(5557):1009–1014

    Article  CAS  PubMed  Google Scholar 

  21. Oberpenning F et al (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17(2):149–155

    Article  CAS  PubMed  Google Scholar 

  22. Yang F et al (2004) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25(10):1891–1900

    Article  CAS  PubMed  Google Scholar 

  23. Bognitzki M et al (2001) Nanostructured fibers via electrospinning. Adv Mater 13(1):70–72

    Article  CAS  Google Scholar 

  24. Lysaght MJ, Reyes J (2001) The growth of tissue engineering. Tissue Eng 7(5):485–493

    Article  CAS  PubMed  Google Scholar 

  25. Domb AJ, Kost J, Wiseman D (1998) Handbook of biodegradable polymers, vol 7. CRC Press, Boca Raton

    Book  Google Scholar 

  26. Vleggaar D, Fitzgerald R, Lorenc ZP (2014) Composition and mechanism of action of poly-L-lactic acid in soft tissue augmentation. J Drugs Dermatol 13(4 Suppl):s29-31

    CAS  PubMed  Google Scholar 

  27. Wu Y-Y et al (2019) Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biol 9(1):180177–180177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cervelli V, et al (2010) Use of platelet rich plasma and hyaluronic acid on exposed tendons of the foot and ankle. J Wound Care 19(5):186, 188–190.

  29. Shehadat SA et al (2018) Optimization of scanning electron microscope technique for amniotic membrane investigation: a preliminary study. Eur J Dent 12(4):574–578

    Article  PubMed  PubMed Central  Google Scholar 

  30. Halabian R et al (2019) Composite nanoscaffolds modified with bio-ceramic nanoparticles (Zn2SiO4) prompted osteogenic differentiation of human induced pluripotent stem cells. Int J Mol Cell Med 8(1):24

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hejazian LB et al (2012) The role of biodegradable engineered nanofiber scaffolds seeded with hair follicle stem cells for tissue engineering. Iran Biomed J 16(4):193

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wernig M et al (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci 105(15):5856–5861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mertens J et al (2016) Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 17(7):424–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49(6):377–391

    Article  CAS  PubMed  Google Scholar 

  35. Kim BJ et al (2004) Forskolin promotes astroglial differentiation of human central neurocytoma cells. Exp Mol Med 36(1):52–56

    Article  CAS  PubMed  Google Scholar 

  36. Ruggieri M et al (2014) Induced neural stem cells: methods of reprogramming and potential therapeutic applications. Prog Neurobiol 114:15–24

    Article  CAS  PubMed  Google Scholar 

  37. Tio M et al (2010) Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells. PLoS ONE 5(2):e9398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhang L et al (2011) cAMP initiates early phase neuron-like morphology changes and late phase neural differentiation in mesenchymal stem cells. Cell Mol Life Sci 68(5):863–876

    Article  CAS  PubMed  Google Scholar 

  39. Salimi A et al (2014) Comparison of different protocols for neural differentiation of human induced pluripotent stem cells. Mol Biol Rep 41(3):1713–1721

    Article  CAS  PubMed  Google Scholar 

  40. Kim S-S et al (2005) cAMP induces neuronal differentiation of mesenchymal stem cells via activation of extracellular signal-regulated kinase/MAPK. NeuroReport 16(12):1357–1361

    Article  CAS  PubMed  Google Scholar 

  41. Kao H-T et al (2002) A protein kinase A–dependent molecular switch in synapsins regulates neurite outgrowth. Nat Neurosci 5(5):431–437

    Article  CAS  PubMed  Google Scholar 

  42. Sugimoto N et al (2016) Protein kinase A and Epac activation by cAMP regulates the expression of glial fibrillary acidic protein in glial cells. Arch Biol Sci 68(4):795–801

    Article  Google Scholar 

  43. Sanchez C, Dıaz-Nido J, Avila J (2000) Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61(2):133–168

    Article  CAS  PubMed  Google Scholar 

  44. Lee MK et al (1990) The expression and posttranslational modification of a neuron-specific β-tubulin isotype during chick embryogenesis. Cell Motil Cytoskelet 17(2):118–132

    Article  CAS  Google Scholar 

  45. Farrag TY et al (2007) Effect of platelet rich plasma and fibrin sealant on facial nerve regeneration in a rat model. Laryngoscope 117(1):157–165

    Article  PubMed  Google Scholar 

  46. Sariguney Y et al (2008) Effect of platelet-rich plasma on peripheral nerve regeneration. J Reconstr Microsurg 24(03):159–167

    Article  PubMed  Google Scholar 

  47. Zheng C et al (2016) Effect of platelet-rich plasma (PRP) concentration on proliferation, neurotrophic function and migration of Schwann cells in vitro. J Tissue Eng Regen Med 10(5):428–436

    Article  CAS  PubMed  Google Scholar 

  48. Amable PR et al (2013) Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther 4(3):67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bieback K (2013) Platelet lysate as replacement for fetal bovine serum in mesenchymal stromal cell cultures. Transfus Med Hemother 40(5):326–335

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rauch C et al (2014) Human platelet lysates successfully replace fetal bovine serum in adipose-derived adult stem cell culture. J Adv Biotechnol Bioeng 2:1–11

    Article  CAS  Google Scholar 

  51. Basu A et al (2016) Poly (α-hydroxy acid) s and poly (α-hydroxy acid-co-α-amino acid) s derived from amino acid. Adv Drug Deliv Rev 107:82–96

    Article  CAS  PubMed  Google Scholar 

  52. Castro AG, et al (2016) Top-down approach for the preparation of highly porous PLLA microcylinders. ACS Biomater Sci Eng

  53. Narayanan G et al (2016) Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev 107:247–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jang S et al (2010) Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol 11(1):1

    Article  CAS  Google Scholar 

  55. Mansourizadeh F et al (2013) PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering. Mol Biol Res Commun 2(1):1–10

    Google Scholar 

  56. Johansson F et al (2006) Axonal outgrowth on nano-imprinted patterns. Biomaterials 27(8):1251–1258

    Article  CAS  PubMed  Google Scholar 

  57. Chow WN et al (2007) Evaluating neuronal and glial growth on electrospun polarized matrices: bridging the gap in percussive spinal cord injuries. Neuron Glia Biol 3(02):119–126

    Article  PubMed  PubMed Central  Google Scholar 

  58. Englund-Johansson U, Netanyah E, Johansson F (2017) Tailor-made electrospun culture scaffolds control human neural progenitor cell behavior—studies on cellular migration and phenotypic differentiation. J Biomater Nanobiotechnol 8:1–21

    Article  CAS  Google Scholar 

  59. Yang J, Bei J, Wang S (2002) Improving cell affinity of poly (D, L-lactide) film modified by anhydrous ammonia plasma treatment. Polym Adv Technol 13(3–4):220–226

    Article  CAS  Google Scholar 

  60. Nagai A et al (2007) Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS ONE 2(12):e1272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mahoney MJ, Saltzman WM (2001) Transplantation of brain cells assembled around a programmable synthetic microenvironment. Nat Biotechnol 19(10):934–939

    Article  CAS  PubMed  Google Scholar 

  62. Ardhani R, Susilowati R, Ana ID (2015) Functional recovery of axonal injury induced by gelatin-hydrogel film and PRP: an initial study in rats. J Biomed Sci Eng 8(3):160

    Article  Google Scholar 

  63. Qi C et al (2015) Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine. Protein Cell 6(9):638–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schense JC, Hubbell JA (2000) Three-dimensional migration of neurites is mediated by adhesion site density and affinity. J Biol Chem 275(10):6813–6818

    Article  CAS  PubMed  Google Scholar 

  65. Koh H et al (2008) Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29(26):3574–3582

    Article  CAS  PubMed  Google Scholar 

  66. Swindle CS et al (2001) Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J Cell Biol 154(2):459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8(55):153–170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Nanobiotechnology Research Center of Baqiyatallah University of Medical Sciences for their valuable contributions to this research.

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

RM, RH, and MG reviewed the literature, outlined, wrote the manuscript. SEE, ME edited the manuscript and DP prepared figures. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marzieh Ghollasi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moazamiyanfar, R., Halabian, R., Ghollasi, M. et al. Neural Differentiation of Human-Induced Pluripotent Stem Cells (hiPSc) on Surface-Modified Nanofibrous Scaffolds Coated with Platelet-Rich Plasma. Neurochem Res 47, 1991–2001 (2022). https://doi.org/10.1007/s11064-022-03584-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03584-2

Keywords

Navigation