Skip to main content

Advertisement

Log in

Tetrandrine Ameliorates Traumatic Brain Injury by Regulating Autophagy to Reduce Ferroptosis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is the leading cause of death and disability in trauma patients. However, the effects and mechanism of autophagy after TBI remain unclear. This study aimed to investigate whether tetrandrine could ameliorate TBI through autophagy to reduce ferroptosis. A mice model for TBI was implemented. Behavioral and histomorphological experiments were performed to evaluate outcomes of the mice. The ferroptosis levels was detected by Perls staining. Enzyme-linked immunosorbent assay (ELISA) was applied to detect malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase 4 (GPX4) levels in the brain tissue. Western blot test was performed to detect Beclin 1, light chain 3 (LC3) II/I, p62, GPX4, SCL7A11, and ferritin heavy chain 1 (FTH1) levels, and the expression of LC3B, Beclin 1, GPX4, and FTH1 in the brain tissue was detected by immunofluorescence (IF). The behavioral and histomorphological results demonstrated that tetrandrine improved the neurological function and cerebral edema on days 1, 3, and 7 after TBI. The ELISA results suggested that tetrandrine reduced the MDA concentration and increased GSH concentration on days 1, 3, and 7 after TBI. IF staining and Perls staining reflected that tetrandrine promoted autophagy and inhibited ferroptosis on days 1, 3, and 7 after TBI, respectively. Tetrandrine further improved the neurological function, cerebral edema, autophagy, and ferroptosis on days 1, 3, and 7 after TBI after adding the autophagy inducer rapamycin. The effect of TET in alleviating TBI increased with the increase of time and dose. Tetrandrine ameliorated TBI by regulating autophagy to reduce ferroptosis, providing a new therapeutic strategy for TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors confirm that all data underlying the findings are available.

References

  1. Vella MA, Crandall ML, Patel MB (2017) Acute management of traumatic brain injury. Surg Clin North Am 97(5):1015–1030

    Article  PubMed  PubMed Central  Google Scholar 

  2. Capizzi A, Woo J, Verduzco-Gutierrez M (2020) Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Med Clin North Am 104(2):213–238

    Article  PubMed  Google Scholar 

  3. Galgano M et al (2017) Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant 26(7):1118–1130

    Article  PubMed  PubMed Central  Google Scholar 

  4. Witcher KG et al (2021) Traumatic brain injury causes chronic cortical inflammation and neuronal dysfunction mediated by microglia. J Neurosci 41(7):1597–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Curia G et al (2014) Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem 21(6):663–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khellaf A, Khan DZ, Helmy A (2019) Recent advances in traumatic brain injury. J Neurol 266(11):2878–2889

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu J et al (2020) Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem Biol 27(4):420–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Liu J et al (2020) Crosstalk between autophagy and ferroptosis and its putative role in ischemic stroke. Front Cell Neurosci 14:577403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeng Z et al (2020) Modulation of autophagy in traumatic brain injury. J Cell Physiol 235(3):1973–1985

    Article  CAS  PubMed  Google Scholar 

  10. Luo C, Tao L (2020) The function and mechanisms of autophagy in traumatic brain injury. Adv Exp Med Biol 1207:635–648

    Article  CAS  PubMed  Google Scholar 

  11. Chen X et al (2018) Omega-3 polyunsaturated fatty acid attenuates traumatic brain injury-induced neuronal apoptosis by inducing autophagy through the upregulation of SIRT1-mediated deacetylation of Beclin-1. J Neuroinflamm 15(1):310

    Article  CAS  Google Scholar 

  12. Jalin AMA et al (2019) EPPS treatment attenuates traumatic brain injury in mice by reducing Aβ burden and ameliorating neuronal autophagic flux. Exp Neurol 314:20–33

    Article  PubMed Central  CAS  Google Scholar 

  13. Wang H et al (2020) Mitochondria regulation in ferroptosis. Eur J Cell Biol 99(1):151058

    Article  CAS  PubMed  Google Scholar 

  14. Xie Y et al (2020) Interplay between lipid metabolism and autophagy. Front Cell Dev Biol 8:431

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen HY et al (2021) ELAVL1 is transcriptionally activated by FOXC1 and promotes ferroptosis in myocardial ischemia/reperfusion injury by regulating autophagy. Mol Med 27(1):14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen Y et al (2020) Amentoflavone suppresses cell proliferation and induces cell death through triggering autophagy-dependent ferroptosis in human glioma. Life Sci 247:117425

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Zhang L, Zhou X (2021) Activation of Nrf2 signaling protects hypoxia-induced HTR-8/SVneo cells against ferroptosis. J Obstet Gynaecol Res 47:3797

    Article  CAS  PubMed  Google Scholar 

  18. Bhagya B, Chandrashekar KR (2018) Tetrandrine and cancer—an overview on the molecular approach. Biomed Pharmacother 97:624–632

    Article  CAS  Google Scholar 

  19. Luan F, He X, Zeng N (2020) Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol 72(11):1491–1512

    Article  CAS  PubMed  Google Scholar 

  20. Bhagya N, Chandrashekar KR (2016) Tetrandrine–A molecule of wide bioactivity. Phytochemistry 125:5–13

    Article  CAS  PubMed  Google Scholar 

  21. Guo Y, Pei X (2019) Tetrandrine-induced autophagy in MDA-MB-231 triple-negative breast cancer cell through the inhibition of PI3K/AKT/mTOR signaling. Evid Based Complement Altern Med 2019:7517431

    Google Scholar 

  22. Liu T et al (2017) Tetrandrine antagonizes acute megakaryoblastic leukaemia growth by forcing autophagy-mediated differentiation. Br J Pharmacol 174(23):4308–4328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fang S et al (2021) Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis 12(1):88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sivandzade F, Alqahtani F, Cucullo L (2020) Traumatic brain injury and blood-brain barrier (BBB): underlying pathophysiological mechanisms and the influence of cigarette smoking as a premorbid condition. Int J Mol Sci 21(8):2721

    Article  CAS  PubMed Central  Google Scholar 

  25. Martinez B, Peplow PV (2017) MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury. Neural Regen Res 12(11):1749–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tominaga T et al (2019) Senescence-associated-β-galactosidase staining following traumatic brain injury in the mouse cerebrum. PLoS ONE 14(3):e0213673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Y, Tsai YH, Tseng SH (2011) The potential of tetrandrine as a protective agent for ischemic stroke. Molecules 16(9):8020–8032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ruan L et al (2013) Tetrandrine attenuated cerebral ischemia/reperfusion injury and induced differential proteomic changes in a MCAO mice model using 2-D DIGE. Neurochem Res 38(9):1871–1879

    Article  CAS  PubMed  Google Scholar 

  29. Chen W et al (2017) Connexin40 correlates with oxidative stress in brains of traumatic brain injury rats. Restor Neurol Neurosci 35(2):217–224

    CAS  PubMed  Google Scholar 

  30. Mao X et al (2015) Procyanidins protects against oxidative damage and cognitive deficits after traumatic brain injury. Brain Inj 29(1):86–92

    Article  PubMed  Google Scholar 

  31. Jiao B et al (2020) Tetrandrine attenuates hyperoxia-induced lung injury in newborn rats via NF-κB p65 and ERK1/2 pathway inhibition. Ann Transl Med 8(16):1018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang Y et al (2021) Tetrandrine attenuates ischemia/reperfusion-induced neuronal damage in the subacute phase. Mol Med Rep. https://doi.org/10.3892/mmr.2021.11936

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rehman SU et al (2019) Neurological enhancement effects of melatonin against brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration via AMPK/CREB signaling. Cells 8(7):760

    Article  PubMed Central  CAS  Google Scholar 

  34. Wang J et al (2019) Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radic Biol Med 131:345–355

    Article  CAS  PubMed  Google Scholar 

  35. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang DY et al (2021) ER stress mediated-autophagy contributes to neurological dysfunction in traumatic brain injury via the ATF6 UPR signaling pathway. Mol Med Rep. https://doi.org/10.3892/mmr.2021.11886

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sarkar C et al (2014) Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10(12):2208–2222

    Article  CAS  PubMed  Google Scholar 

  38. Wu J, Lipinski MM (2019) Autophagy in neurotrauma: good, bad, or dysregulated. Cells 8(7):693

    Article  CAS  PubMed Central  Google Scholar 

  39. Fang J et al (2018) Baicalin protects mice brain from apoptosis in traumatic brain injury model through activation of autophagy. Front Neurosci 12:1006

    Article  PubMed  Google Scholar 

  40. Zhou B et al (2020) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 66:89–100

    Article  CAS  PubMed  Google Scholar 

  41. Wei S et al (2020) Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater 384:121390

    Article  CAS  PubMed  Google Scholar 

  42. Tang S et al (2020) The role of iron, its metabolism and ferroptosis in traumatic brain injury. Front Cell Neurosci 14:590789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie BS et al (2019) Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci Ther 25(4):465–475

    Article  CAS  PubMed  Google Scholar 

  44. Huang L et al (2021) Polydatin alleviates traumatic brain injury: role of inhibiting ferroptosis. Biochem Biophys Res Commun 556:149–155

    Article  CAS  PubMed  Google Scholar 

  45. Park E, Chung SW (2019) ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis 10(11):822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Xiao J et al (2021) Arsenite induces ferroptosis in the neuronal cells via activation of ferritinophagy. Food Chem Toxicol 151:112114

    Article  CAS  PubMed  Google Scholar 

  47. Liang Y et al (2021) Ferritinophagy is involved in experimental subarachnoid hemorrhage-induced neuronal ferroptosis. Neurochem Res 47:692

    Article  PubMed  CAS  Google Scholar 

  48. Tian Y et al (2020) FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics 17(4):1796–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yan N et al (2021) Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway. Int Immunopharmacol 98:107844

    Article  CAS  PubMed  Google Scholar 

  50. Fang Y et al (2021) Inhibiting ferroptosis through disrupting the NCOA4-FTH1 Interaction: a new mechanism of action. ACS Cent Sci 7(6):980–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li X et al (2021) miR-335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson’s disease. Int J Mol Med. https://doi.org/10.3892/ijmm.2021.4894

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang X et al (2018) Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways. Free Radic Biol Med 124:504–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Laboratory Animal of University of South China for their technical assistance.

Funding

This work was supported by the Hunan Provincial Natural Science Fund (No. 2019JJ80056); Natural Science Foundation of Hunan Province (No. 2021JJ70045); and General Project of Hunan Provincial Department of Education (No. 20C1587).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HL, SH, QZ, and RC; Data curation: SH, JW, and YL; Methodology: HL, SH, JW, CL, and YL; Formal analysis and investigation: QZ, HL, SH, JW, CL, and YL; Writing—original draft preparation: HL and SH; Writing—review and editing: QZ and RC; Funding acquisition: QZ and RC; Resources: QZ and RC; and Supervision: RC.

Corresponding authors

Correspondence to Qin Zou or Rui Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This study was approved by the Animal Experiment Ethics Committee of University of South China and conducted in strict accordance with the National Institutes of Health Guidelines for the Care and Use of Experimental Animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11064_2022_3553_MOESM1_ESM.jpg

Supplementary Figure 1. Histomorphological damage on day 1 and day 3 after TBI. Scale bar = 100 µm; The magnifications were 40x, 100x, and 400x (JPG 4639 kb)

11064_2022_3553_MOESM2_ESM.jpg

Supplementary Figure 2. IF was applied to detect the expression of LC3B on day 1 and day 3 after TBI. Scale bar = 100 µm; The magnification was 400x. (LC3, light chain 3) (JPG 3019 kb)

11064_2022_3553_MOESM3_ESM.jpg

Supplementary Figure 3. Beclin 1, GPX4, and FTH1 expression on day 1 and day 3 after TBI was measured by IF. Scale bar = 100 µm; The magnification was 400x. (GPX4, glutathione peroxidase 4. FTH1, ferritin heavy chain 1) (JPG 8423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., He, S., Wang, J. et al. Tetrandrine Ameliorates Traumatic Brain Injury by Regulating Autophagy to Reduce Ferroptosis. Neurochem Res 47, 1574–1587 (2022). https://doi.org/10.1007/s11064-022-03553-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03553-9

Keywords

Navigation