Skip to main content
Log in

Clonidine and Brain Mitochondrial Energy Metabolism: Pharmacodynamic Insights Beyond Receptorial Effects

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Clonidine is an anti-hypertensive drug that inhibits the release of norepinephrine from pre-synaptic terminals binding to pre-synaptic α2-adrenoreceptors. Some studies suggest that this drug decreases brain energy expenditure, particularly in hypoxic-ischemic injury. However, data about clonidine effects on the functional parameters regulating brain energy metabolism are lacking. In this study, the effects of acute clonidine treatment (5 μg×kg−1 i.p., 30 min) were evaluated on the catalytic activity of regulatory energy-linked enzymes of Krebs’ cycle, Electron Transport Chain and glutamate metabolism of temporal cerebral cortex of 3-month-old male Sprague–Dawley rats. Enzyme activities were assayed on non-synaptic “free” mitochondria (FM) of neuronal perikaryon and partly of glial cells, and on intra-synaptic “light” (LM) and “heavy” mitochondria (HM), localized within synaptic terminals. This subcellular analysis differentiates clonidine effects on post-synaptic and pre-synaptic neuronal compartments. The results showed that clonidine increased citrate synthase, cytochrome oxidase and glutamate–oxaloacetate transaminase activities of FM. In LM, citrate synthase activity was decreased, while cytochrome oxidase and glutamate–oxaloacetate transaminase activities were increased; on the contrary, citrate synthase, cytochrome oxidase and glutamate dehydrogenase were all decreased in HM. Therefore, clonidine exerted different effects with respect to brain mitochondria, coherently with the in vivo energy requirements of each synaptic compartment: the drug increased energy-linked enzyme activities in post-synaptic compartment, while the metabolic variations were complex in the pre-synaptic one, being enzyme activities heterogeneously modified in LM and decreased in HM. This study highlights the relationships existing between the clonidine-induced neuroreceptorial effects and the energy metabolism in pre- and post- synaptic bioenergetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wang X, Li G, Abdel-Rahman AA (2005) Site-dependent inhibition of neuronal c-jun in the brainstem elicited by imidazoline I1 receptor activation: role in rilmenidine-evoked hypotension. Eur J Pharmacol 514:191–199

    Article  CAS  PubMed  Google Scholar 

  2. Huwyler J, Fricker G, Török M, Schneider M, Drewe J (1997) Transport of clonidine across cultured brain microvessel endothelial cells. J Pharmacol Exp Ther 282:81–85

    CAS  PubMed  Google Scholar 

  3. Hall DL, Tatakis DN, Walters JD, Rezvan E (2006) Oral clonidine pre-treatment and diazepam/meperidine sedation. J Dent Res 85:854–858

    Article  CAS  PubMed  Google Scholar 

  4. Schneider JS, Tinker JP, Decamp E (2010) Clonidine improves attentional and memory components of delayed response performance in a model of early Parkinsonism. Behav Brain Res 211:236–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bardgett ME, Points M, Ramsey-Faulkner C, Topmiller J, Roflow J, McDaniel T, Lamontagne T, Griffith MS (2008) The effects of clonidine on discrete-trial delayed spatial alternation in two rat models of memory loss. Neuropsychopharmacology 33:1980–1991

    Article  CAS  PubMed  Google Scholar 

  6. Gupta S, Sharma B (2014) Pharmacological modulation of I1-imidazoline and α2-adrenoceptors in sub-acute brain ischemia induced vascular dementia. Eur J Pharmacol 723:80–90

    Article  CAS  PubMed  Google Scholar 

  7. Jellish WS, Murdoch J, Kindel G, Zhang X, White FA (2005) The effect of clonidine on cell survival, glutamate, and aspartate release in normo- and hyperglycemic rats after near complete forebrain ischemia. Exp Brain Res 167:526–534

    Article  CAS  PubMed  Google Scholar 

  8. Milot MR, Plamondon H (2011) Changes in HPA reactivity and noradrenergic functions regulate spatial memory impairments at delayed time intervals following cerebral ischemia. Horm Behav 59:594–604

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y (2004) Clonidine preconditioning decreases infarct size and improves neurological outcome from transient forebrain ischemia in the rat. Neuroscience 125:625–631

    Article  CAS  PubMed  Google Scholar 

  10. Chao HM, Chidlow G, Melena J, Wood JP, Osborne NN (2000) An investigation into the potential mechanisms underlying the neuroprotective effect of clonidine in the retina. Brain Res 877:47–57

    Article  CAS  PubMed  Google Scholar 

  11. Gorini A, Villa RF (2001) Effect of in vivo treatment of clonidine on ATP-ase’s enzyme systems of synaptic plasma membranes from rat cerebral cortex. Neurochem Res 26:821–827

    Article  CAS  PubMed  Google Scholar 

  12. Jiménez-Rivera CA, Figueroa J, Vázquez-Torres R, Vélez-Hernandez ME, Schwarz D, Velásquez-Martinez MC, Arencibia-Albite F (2012) Presynaptic inhibition of glutamate transmission by α2 receptors in the VTA. Eur J Neurosci 35:1406–1415

    Article  PubMed  PubMed Central  Google Scholar 

  13. Karmen NB (2003) Oxidative modification of erythrocyte membranes in the acute stage of severe craniocerebral trauma and its correction with clonidine. Bull Exp Biol Med 136:362–365

    Article  CAS  PubMed  Google Scholar 

  14. Moretti A, Ferrari F, Villa RF (2015) Neuroprotection for ischaemic stroke: current status and challenges. Pharmacol Ther 146:23–34

    Article  CAS  PubMed  Google Scholar 

  15. Villa RF, Gorini A, Ferrari F, Hoyer S (2013) Energy metabolism of cerebral mitochondria during aging, ischemia and post-ischemic recovery assessed by functional proteomics of enzymes. Neurochem Int 63:765–781

    Article  CAS  PubMed  Google Scholar 

  16. Hoffman WE, Cheng MA, Thomas C, Baughman VL, Albrecht RF (1991) Clonidine decreases plasma catecholamines and improves outcome from incomplete ischemia in the rat. Anesth Analg 73:460–464

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt K, Philipsenburg C, Zivkovic A, Hofer S (2013) Effects of clonidine on microcirculatory alterations during endotoxemia. Crit Care 17(S2):P388

    Article  PubMed Central  Google Scholar 

  18. Ståhl N, Ungerstedt U, Nordström CH (2001) Brain energy metabolism during controlled reduction of cerebral perfusion pressure in severe head injuries. Intensive Care Med 27:1215–1223

    Article  PubMed  Google Scholar 

  19. Taittonen M, Kirvelä O, Aantaa R, Kanto J (1997) Cardiovascular and metabolic responses to clonidine and midazolam premedication. Eur J Anaesthesiol 14:190–196

    Article  CAS  PubMed  Google Scholar 

  20. Quintin L, Viale JP, Annat G, Hoen JP, Butin E, Cottet-Emard JM, Levron JC, Bussery D, Motin J (1991) Oxygen uptake after major abdominal surgery: effect of clonidine. Anesthesiology 74:236–241

    Article  CAS  PubMed  Google Scholar 

  21. Villa RF, Ferrari F, Gorini A (2013) Functional proteomics related to energy metabolism of synaptosomes from different neuronal systems of rat hippocampus during aging. J Proteome Res 12:5422–5435

    Article  CAS  PubMed  Google Scholar 

  22. Battino M, Quiles JL, Huertas JR, Mataix JF, Villa RF, Gorini A (2000) Cerebral cortex synaptic heavy mitochondria may represent the oldest synaptic mitochondrial population: biochemical heterogeneity and effects of L-acetylcarnitine. J Bioenerg Biomembr 32:163–173

    Article  CAS  PubMed  Google Scholar 

  23. Battino M, Ferreiro MS, Littarru G, Quiles JL, Ramírez-Tortosa MC, Huertas JR, Mataix J, Villa RF, Gorini A (2002) Structural damage induced by peroxidation may account for functional impairment of heavy synaptic mitochondria. Free Radic Res 36:479–484

    Article  CAS  PubMed  Google Scholar 

  24. Lai JCK, Walsh JM, Dennis SC, Clark JB (1977) Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J Neurochem 28:625–631

    Article  CAS  PubMed  Google Scholar 

  25. Villa RF, Gorini A, Hoyer S (2006) Differentiated effect of ageing on the enzymes of Krebs’ cycle, electron transfer complexes and glutamate metabolism of non-synaptic and intra-synaptic mitochondria from cerebral cortex. J Neural Transm 113:1659–1570

    Article  CAS  PubMed  Google Scholar 

  26. Villa RF, Gorini A, Hoyer S (2009) Effect of ageing and ischemia on enzymatic activities linked to Krebs’ cycle, electron transfer chain, glutamate and aminoacids metabolism of free and intrasynaptic mitochondria of cerebral cortex. Neurochem Res 34:2102–2116

    Article  CAS  PubMed  Google Scholar 

  27. Villa RF, Ferrari F, Gorini A (2012) Effect of CDP-choline on age-dependent modifications of energy- and glutamate-linked enzyme activities in synaptic and non-synaptic mitochondria from rat cerebral cortex. Neurochem Int 61:1424–1432

    Article  CAS  PubMed  Google Scholar 

  28. Villa RF, Ferrari F, Gorini A, Brunello N, Tascedda F (2016) Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria. Neuroscience 330:326–334

    Article  CAS  PubMed  Google Scholar 

  29. Villa RF, Ferrari F, Bagini L, Gorini A, Brunello N, Tascedda F (2017) Mitochondrial energy metabolism of rat hippocampus after treatment with the antidepressants desipramine and fluoxetine. Neuropharmacology 121:30–38

    Article  CAS  PubMed  Google Scholar 

  30. Fisher RA, Yates F (1963) Statistical tables for biological, agricultural and medical research. Edinburgh, Oliver and Boyd

    Google Scholar 

  31. Benzi G, Gorini A, Ghigini B, Arnaboldi R, Villa RF (1994) Modifications by hypoxia and drug treatment of cerebral ATPase plasticity. Neurochem Res 19:517–524

    Article  CAS  PubMed  Google Scholar 

  32. Conway EL, Jarrott B (1982) Tissue pharmacokinetics of clonidine in rats. J Pharmacokinet Biopharm 10:187–200

    Article  CAS  PubMed  Google Scholar 

  33. Paalzow LK, Edlund PO (1979) Pharmacokinetics of clonidine in the rat and cat. J Pharmacokinet Biopharm 7:481–494

    Article  CAS  PubMed  Google Scholar 

  34. Claessens AJ, Risler LJ, Eyal S, Shen DD, Easterling TR, Hebert MF (2010) CYP2D6 mediates 4-hydroxylation of clonidine in vitro: implication for pregnancy-induced changes in clonidine clearance. Drug Metab Dispos 38:1393–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khan ZP, Ferguson CN, Jones RM (1999) alpha-2 and imidazoline receptor agonists their pharmacology and therapeutic role. Anaesthesia 54:146–165

    Article  CAS  PubMed  Google Scholar 

  36. Villa RF, Gorini A, LoFaro A, Dell’Orbo C (1989) A critique on the preparation and enzymatic characterization of synaptic and non-synaptic mitochondria from hippocampus. Cell Mol Neurobiol 9:247–262

    Article  CAS  PubMed  Google Scholar 

  37. Glowinsky J, Iversen LL (1966) Regional studies of catecholamines in the rat brain - I. The disposition of 3H-norepinephrine, 3H-dopamine and 3H-DOPA in various regions of the brain. J Neurochem 13:655–669

    Article  Google Scholar 

  38. Alosco ML, Gunstad J, Xu X, Clark US, Labbe DR, Riskin-Jones HH, Terrero G, Schwarz NF, Walsh EG, Poppas A, Cohen RA, Sweet LH (2014) The impact of hypertension on cerebral perfusion and cortical thickness in older adults. J Am Soc Hypertens 8:561–570

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jennings JR, Mendelson DN, Muldoon MF, Ryan CM, Gianaros PJ, Raz N, Aizenstein H (2012) Regional grey matter shrinks in hypertensive individuals despite successful lowering of blood pressure. J Hum Hypertens 26:295–305

    Article  CAS  PubMed  Google Scholar 

  40. Sugden PH, Newsholme EA (1975) Activities of citrate synthase, NAD+-linked and NADP+-linked isocitrate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in nervous tissues from vertebrates and invertebrates. Biochem J 150:105–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ackrell BAC, Kearney EB, Singer TP (1978) Mammalian succinate dehydrogenase. In: Estabrook RW, Pullman ME (eds) Methods in Enzymology, vol 23. Academic Press. New York, London, pp 446–483

    Google Scholar 

  42. Battino M, Bertoli E, Formaggini G, Sassi S, Gorini A, Villa RF, Lenaz G (1991) Structural and functional aspects of the respiratory chain of synaptic and nonsynaptic mitochondria derived from selected brain regions. J Bioenerg Biomembr 23:245–263

    Article  Google Scholar 

  43. Smith L (1955) Spectrophotometric assay of cytochrome c oxidase. In: Glick D (ed) Methods of Biochemical Analysis, vol 2. Wiley-Interscience, New York, pp 427–434

    Google Scholar 

  44. Smith L, Davies HC, Nava M (1974) Oxidation and reduction of soluble cytochrome c by membrane-bound oxidase and reductase system. J Biol Chem 249:2904–1910

    Article  CAS  PubMed  Google Scholar 

  45. Wharton DC, Tzagoloff A (1967) Cytochrome oxidase from beef heart mitochondria. In: Estabrook RW, Pullman ME (eds) Methods in Enzymology, vol 10. Academic Press. New York, London, pp 245–250

    Google Scholar 

  46. Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101

    Article  CAS  PubMed  Google Scholar 

  47. Bergmeyer HU, Bernt E (1974) Glutamate-pyruvate transaminase: UV-assay, manual method. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2. Academic Press, New York, pp 752–758

    Chapter  Google Scholar 

  48. Cooper AJ, Jeitner TM (2016) Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules 6:16

    Article  PubMed Central  Google Scholar 

  49. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  50. Shapiro S, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  51. Kang CW, Kvam PH (2012) Shewhart Control Charts. Basic statistical tools for improving quality. John Wiley & Sons, New York, pp 97–124

    Chapter  Google Scholar 

  52. Ferrari F, Gorini A, Hoyer S, Villa RF (2018) Glutamate metabolism in cerebral mitochondria after ischemia and post-ischemic recovery during aging: relationships with brain energy metabolism. J Neurochem 146:416–428

    Article  CAS  PubMed  Google Scholar 

  53. Wong-Riley MT (2012) Bigenomic regulation of cytochrome c oxidase in neurons and the tight coupling between neuronal activity and energy metabolism. Adv Exp Med Biol 748:283–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith TJ, Stanley CA (2008) Untangling the glutamate dehydrogenase allosteric nightmare. Trends Biochem Sci 33:557–564

    Article  CAS  PubMed  Google Scholar 

  55. Dienel GA (2019) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99:949–1045

    Article  CAS  PubMed  Google Scholar 

  56. Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI (2021) Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 196:108719

    Article  CAS  PubMed  Google Scholar 

  57. Hohnholt MC, Andersen VH, Andersen JV, Christensen SK, Karaca M, Maechler P, Waagepetersen HS (2018) Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation. J Cerebr Blood Flow Metabol 38:1754–1768

    Article  CAS  Google Scholar 

  58. Andersen JV, Jakobsen E, Waagepetersen HS, Aldana BI (2019) Distinct differences in rates of oxygen consumption and ATP synthesis of regionally isolated non-synaptic mouse brain mitochondria. J Neurosci Res 97:961–974

    Article  CAS  PubMed  Google Scholar 

  59. Lindblom P, Rafter I, Copley C, Andersson U, Hedberg JJ, Berg AL, Samuelsson A, Hellmold H, Cotgreave I, Glinghammar B (2007) Isoforms of alanine aminotransferases in human tissues and serum-differential tissue expression using novel antibodies. Arch Biochem Biophys 466:66–77

    Article  CAS  PubMed  Google Scholar 

  60. Ouyang Q, Nakayama T, Baytas O, Davidson SM, Yang C, Schmidt M, Lizarraga SB, Mishra S, Ei-Quessny M, Niaz S, Gul Butt M, Imran Murtaza S, Javed A, Chaudhry HR, Vaughan DJ, Hill RS, Partlow JN, Yoo SY, Lam AT, Nasir R, Al-Saffar M, Barkovich AJ, Schwede M, Nagpal S, Rajab A, DeBerardinis RJ, Housman DE, Mochida GH, Morrow EM (2016) Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features. Proc Natl Acad Sci USA 113:E5598–E5607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weinberg FF, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107:8788–8793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  63. Rangaraju V, Calloway N, Ryan TA (2014) Activity-driven local ATP synthesis is required for synaptic function. Cell 156:825–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777

    Article  CAS  PubMed  Google Scholar 

  65. Villa RF, Gorini A, Hoyer S (2002) ATPases of synaptic plasma membranes from hippocampus after ischemia and recovery during ageing. Neurochem Res 27:861–870

    Article  CAS  PubMed  Google Scholar 

  66. Nicholls DG (2004) Mitochondrial membrane potential and aging. Aging Cell 3:35–40

    Article  CAS  PubMed  Google Scholar 

  67. Saxena U (2012) Bioenergetics failure in neurodegenerative diseases: back to the future. Expert Opin Ther Targets 16:351–354

    Article  CAS  PubMed  Google Scholar 

  68. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12:585–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Villa RF, Ferrari F, Gorini A (2012) Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing. Neuroscience 227:55–66

    Article  CAS  PubMed  Google Scholar 

  70. Gorini A, D’Angelo A, Villa RF (1998) Action of L-acetylcarnitine on different cerebral mitochondrial populations from cerebral cortex. Neurochem Res 23:1485–1491

    Article  CAS  PubMed  Google Scholar 

  71. Dennis SC, Clark JB (1977) The pathway of glutamate metabolism in rat brain mitochondria. Biochem J 168:521–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McKenna MC, Stridh MH, McNair LF, Sonnewald U, Waagepetersen HS, Schousboe A (2016) Glutamate oxidation in astrocytes: roles of glutamate dehydrogenase and aminotransferases. J Neurosci Res 94:1561–1571

    Article  CAS  PubMed  Google Scholar 

  73. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gorini A, Villa RF (1983) Action of dihydroergocristine on enzyme activities related to energy transduction. II Farmaco 38:191–199

    CAS  Google Scholar 

  75. Borst P (2020) The malate-aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life 72:2241–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fonnum F (1968) The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and Guinea-pig brain. Biochem J 106:401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nik Yusoff NS, Mustapha Z, Govindasamy C, Sirajudeen KN (2013) Effect of Clonidine (an antihypertensive drug) treatment on oxidative stress markers in the heart of spontaneously hypertensive rats. Oxid Med Cell Longev 2013:927214

    Article  PubMed  PubMed Central  Google Scholar 

  78. Filos KS, Panteli ES, Fligou F, Papamichail C, Papapostolou I, Zervoudakis G, Spiliopoulou I, Georgiou C (2012) Clonidine pre-treatment prevents hemorrhagic shock-induced endotoxemia and oxidative stress in the gut, liver, and lungs of the rat. Redox Rep 17:246–251

    Article  CAS  PubMed  Google Scholar 

  79. Fedorovich SV, Waseem TV, Puchkova LV (2017) Biogenetic and morphofunctional heterogeneity of mitochondria: the case of synaptic mitochondria. Rev Neurosci 28:363–373

    Article  CAS  PubMed  Google Scholar 

  80. Naga KK, Sullivan PG, Geddes JW (2007) High cyclophilin D content of synaptic mitochondria results in increased vulnerability to permeability transition. J Neurosci 27:7469–7475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hill RL, Kulbe JR, Singh IN, Wang JA, Hall ED (2018) Synaptic mitochondria are more susceptible to traumatic brain injury-induced oxidative damage and respiratory dysfunction than non-synaptic mitochondria. Neuroscience 386:265–283

    Article  CAS  PubMed  Google Scholar 

  82. Gurd JW, Jones IR, Mahler HR, Moore WJ (1974) Isolation and partial characterization of rat brain synaptic plasma membranes. J Neurochem 22:281–290

    Article  CAS  PubMed  Google Scholar 

  83. Gorini A, Canosi U, Devecchi E, Geroldi D, Villa RF (2002) ATPases enzyme activities during ageing in different types of somatic and synaptic plasma membranes from rat frontal cerebral cortex. Prog Neuropsychopharmacol Biol Psychiatry 26:81–90

    Article  CAS  PubMed  Google Scholar 

  84. Villa RF, Arnaboldi R, Gorini A, Geroldi D (1989) Action of piracetam and clonidine on different mitochondrial populations from hippocampus Il. Farmaco 44:215–226

    CAS  PubMed  Google Scholar 

  85. Lakshminarayan K, Anderson DC, Borbas C, Duval S, Luepker RV (2007) Blood pressure management in acute ischemic stroke. J Clin Hypertens 9:444–453

    Article  Google Scholar 

  86. Burns TW, Langley PE, Terry BE, Bylund DB, Forte LR (1982) Alpha-2 adrenergic activation inhibits forskolin-stimulated adenylate cyclase activity and lipolysis in human adipocytes. Life Sci 31:815–821

    Article  CAS  PubMed  Google Scholar 

  87. Okada M, Mine K, Fujiwara M (1989) Relationship of calcium and adenylate cyclase messenger systems in rat brain synaptosomes. Brain Res 501:23–31

    Article  CAS  PubMed  Google Scholar 

  88. De Langen CDJ, Mulder AH (1980) On the role of calcium ions in the presynaptic alpha-receptors mediated inhibition of [3H]noradrenaline release from rat brain cortex synaptosomes. Brain Res 185:399–408

    Article  PubMed  Google Scholar 

  89. Adamson P, Brammer MJ, Campbell IC (1988) Cyclic AMP analogues potentiate k-opiate and α2-adrenoceptor agonist effects on intrasynaptosomal free calcium. J Neurochem 51:542–547

    Article  CAS  PubMed  Google Scholar 

  90. Adamson P, McWilliam JR, Campbell IC (1988) Mutual antagonism of κ-opiate and α2-adrenoceptor agonist effect on intra-synaptosomal free [Ca2+]i. J Neurochem 50:65–68

    Article  CAS  PubMed  Google Scholar 

  91. Ouyang H, Bai X, Huang W, Chen D, Dohi S, Zeng W (2012) The antinociceptive activity of intrathecally administered amiloride and its interactions with morphine and clonidine in rats. J Pain 13:41–48

    Article  CAS  PubMed  Google Scholar 

  92. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787:1309–1316

    Article  CAS  PubMed  Google Scholar 

  93. Nicholls DG (2017) Brain mitochondrial calcium transport: Origins of the set-point concept and its application to physiology and pathology. Neurochem Int 109:5–12

    Article  CAS  PubMed  Google Scholar 

  94. Madison DV, Nicoll RA (1986) Actions of noradrenaline recorded intracellulary in rat hippocampal pyramidal neurons, in vitro. J Physiol 372:221–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dodt HU, Pawelzik H, Zieglgansberger W (1991) Actions of noradrenaline on neocortical neurons in vitro. Brain Res 545:307–311

    Article  CAS  PubMed  Google Scholar 

  96. Mori-Okamoto J, Namii Y, Tatsuno J (1991) Subtypes of adrenergic receptors and intracellular mechanism involved in modulatory effects of noradrenaline on glutamate. Brain Res 539:67–75

    Article  CAS  PubMed  Google Scholar 

  97. Kamisaki Y, Hamahashi T, Hamada T, Maeda K, Itoh T (1992) Presynaptic inhibition by clonidine of neurotransmitter aminoacid release in various brain regions. Eur J Pharmacol 217:57–63

    Article  CAS  PubMed  Google Scholar 

  98. Ferrari F, Gorini A, Villa RF (2015) Functional proteomics of synaptic plasma membrane ATP-ases of rat hippocampus: effect of L-acetylcarnitine and relationships with dementia and depression pathophysiology. Eur J Pharmacol 756:67–74

    Article  CAS  PubMed  Google Scholar 

  99. Ferrari F, Viscardi P, Gorini A, Villa RF (2019) Synaptic ATPases system of rat frontal cerebral cortex during aging. Neurosci Lett 694:74–79

    Article  CAS  PubMed  Google Scholar 

  100. Villa RF, Ferrari F, Gorini A (2011) Effect of in vivo L-acetylcarnitine administration on ATP-ases enzyme systems of synaptic plasma membranes from rat cerebral cortex. Neurochem Res 36:1372–1382

    Article  CAS  PubMed  Google Scholar 

  101. Villa RF, Ferrari F, Gorini A (2013) ATP-ases of synaptic plasma membranes in striatum: enzymatic systems for synapses functionality by in vivo administration of L-acetylcarnitine in relation to Parkinson’s Disease. Neuroscience 248:414–426

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This Study was supported by: Ministero dell'Università e della Ricerca (MUR), Rome, Italy; Catholic Universitary Center (Centro Universitario Cattolico) of the “Conferenza Episcopale Italiana” (CEI), Rome, Italy.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RFV; Methodology: RFV and AG; Formal analysis and investigation: AG and FF; Writing—original draft preparation: FF; Writing—review and editing: FF and RFV; Supervision: RFV.

Corresponding author

Correspondence to Roberto Federico Villa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Animal maintenance and research approval has been given by ad hoc authorities of the University of Pavia, in accordance with the guidelines of the Italian Ministry of Health, which are in compliance with international laws and policies.

Informed Consent

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villa, R.F., Gorini, A. & Ferrari, F. Clonidine and Brain Mitochondrial Energy Metabolism: Pharmacodynamic Insights Beyond Receptorial Effects. Neurochem Res 47, 1429–1441 (2022). https://doi.org/10.1007/s11064-022-03541-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03541-z

Keywords

Navigation