Skip to main content

Advertisement

Log in

SAHA Inhibits Somatic Hyperalgesia Induced by Stress Combined with Orofacial Inflammation Through Targeting Different Spinal 5-HT Receptor Subtypes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epigenetic regulation of gene expression has been implicated in the development of chronic pain. However, little is known about whether this regulation is involved in the development and treatment of chronic pain comorbidities such as fibromyalgia syndrome (FMS) and temporomandibular disorder (TMD), a comorbidity predominantly occurring among women. Here we explored the impact of the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) on somatic hyperalgesia induced by stress or stress combined with orofacial inflammation, which mimicked the comorbidity of FMS and TMD in rats. Our data showed that somatic thermal hyperalgesia and mechanical allodynia induced by both conditions were completely prevented by intrathecal injection of SAHA, which upregulated 5-HT2C receptors but downregulated 5-HT3 receptors in the spinal dorsal horn. Subsequent spinal administration of RS102221 to inhibit 5-HT2C receptors or SR57227 to activate 5-HT3 receptors reversed the analgesic effect of SAHA under both conditions. These results indicate that SAHA attenuates the pro-nociceptive effects of stress combined with orofacial inflammation and the effects of stress alone. This likely occurs through epigenetic regulation of spinal 5-HT2C and 5-HT3 receptor expression, suggesting that SAHA has potential therapeutic value in FMS or comorbid FMS-TMD patients with somatic hyperalgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Disease GBD, Injury I, Prevalence C (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet 390(10100):1211–1259. https://doi.org/10.1016/S0140-6736(17)32154-2

    Article  Google Scholar 

  2. Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, Cohen M, Evers S, Finnerup NB, First MB, Giamberardino MA, Kaasa S, Kosek E, Lavand’homme P, Nicholas M, Perrot S, Scholz J, Schug S, Smith BH, Svensson P, Vlaeyen JW, Wang SJ (2015) A classification of chronic pain for ICD-11. Pain 156(6):1003–1007. https://doi.org/10.1097/j.pain.0000000000000160

    Article  PubMed  PubMed Central  Google Scholar 

  3. Clauw DJ (2015) Fibromyalgia and related conditions. Mayo Clin Proc 90(5):680–692. https://doi.org/10.1016/j.mayocp.2015.03.014

    Article  PubMed  Google Scholar 

  4. Greene CS (2010) Managing the care of patients with temporomandibular disorders: a new guideline for care. J Am Dent Assoc 141(9):1086–1088. https://doi.org/10.14219/jada.archive.2010.0337

    Article  PubMed  Google Scholar 

  5. Goldberg DS, McGee SJ (2011) Pain as a global public health priority. BMC Public Health 11:770. https://doi.org/10.1186/1471-2458-11-770

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cabo-Meseguer A, Cerda-Olmedo G, Trillo-Mata JL (2017) Fibromyalgia: prevalence, epidemiologic profiles and economic costs. Med Clin (Barc) 149(10):441–448. https://doi.org/10.1016/j.medcli.2017.06.008

    Article  Google Scholar 

  7. Slade GD, Bair E, Greenspan JD, Dubner R, Fillingim RB, Diatchenko L, Maixner W, Knott C, Ohrbach R (2013) Signs and symptoms of first-onset tmd and sociodemographic predictors of its development: the oppera prospective cohort study. J Pain. https://doi.org/10.1016/j.jpain.2013.07.014

    Article  PubMed  PubMed Central  Google Scholar 

  8. Queiroz LP (2013) Worldwide epidemiology of fibromyalgia. Curr Pain Headache Rep 17(8):356. https://doi.org/10.1007/s11916-013-0356-5

    Article  PubMed  Google Scholar 

  9. Isong U, Gansky SA, Plesh O (2008) Temporomandibular joint and muscle disorder-type pain in U.S. adults: the national health interview survey. J Orofac Pain 22(4):317–322

    PubMed  PubMed Central  Google Scholar 

  10. Fischer S, Doerr JM, Strahler J, Mewes R, Thieme K, Nater UM (2016) Stress exacerbates pain in the everyday lives of women with fibromyalgia syndrome—the role of cortisol and alpha-amylase. Psychoneuroendocrinology 63:68–77. https://doi.org/10.1016/j.psyneuen.2015.09.018

    Article  CAS  PubMed  Google Scholar 

  11. Staniszewski K, Lygre H, Bifulco E, Kvinnsland S, Willassen L, Helgeland E, Berge T, Rosen A (2018) Temporomandibular disorders related to stress and HPA-axis regulation. Pain Res Manag 2018:7020751. https://doi.org/10.1155/2018/7020751

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jones GT (2016) Psychosocial vulnerability and early life adversity as risk factors for central sensitivity syndromes. Curr Rheumatol Rev 12(2):140–153. https://doi.org/10.2174/1573397112666151231113438

    Article  PubMed  Google Scholar 

  13. Grossi PK, Bueno CH, de Abreu Silva MA, Pellizzer EP, Grossi ML (2018) Evaluation of sexual, physical, and emotional abuse in women diagnosed with temporomandibular disorders: a case-control study. Int J Prosthodont 31(6):543–551. https://doi.org/10.11607/ijp.5828

    Article  PubMed  Google Scholar 

  14. Jeffery DD, Bulathsinhala L, Kroc M, Dorris J (2014) Prevalence, health care utilization, and costs of fibromyalgia, irritable bowel, and chronic fatigue syndromes in the military health system, 2006-2010. Mil Med 179(9):1021–1029. https://doi.org/10.7205/MILMED-D-13-00419

    Article  PubMed  Google Scholar 

  15. White BA, Williams LA, Leben JR (2001) Health care utilization and cost among health maintenance organization members with temporomandibular disorders. J Orofac Pain 15(2):158–169

    CAS  PubMed  Google Scholar 

  16. Li ZL, Xue Y, Tao ZY, Du WZ, Jiang YG, Cao DY (2019) Spinal 5-HT3 receptor contributes to somatic hyperalgesia induced by sub-chronic stress. Mol Pain 15:1744806919859723. https://doi.org/10.1177/1744806919859723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li JH, Yang JL, Wei SQ, Li ZL, Collins AA, Zou M, Wei F, Cao DY (2020) Contribution of central sensitization to stress-induced spreading hyperalgesia in rats with orofacial inflammation. Mol Brain 13(1):106. https://doi.org/10.1186/s13041-020-00645-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McClure JJ, Li X, Chou CJ (2018) Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv Cancer Res 138:183–211. https://doi.org/10.1016/bs.acr.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  19. Karsli-Ceppioglu S (2016) Epigenetic mechanisms in psychiatric diseases and epigenetic therapy. Drug Dev Res 77(7):407–413. https://doi.org/10.1002/ddr.21340

    Article  CAS  PubMed  Google Scholar 

  20. Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M (2015) Epigenetic mechanisms of chronic pain. Trends Neurosci 38(4):237–246. https://doi.org/10.1016/j.tins.2015.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao DY, Bai G, Ji Y, Traub RJ (2015) Epigenetic upregulation of metabotropic glutamate receptor 2 in the spinal cord attenuates oestrogen-induced visceral hypersensitivity. Gut 64(12):1913–1920. https://doi.org/10.1136/gutjnl-2014-307748

    Article  CAS  PubMed  Google Scholar 

  22. Xue Y, Wei SQ, Wang PX, Wang WY, Liu EQ, Traub RJ, Cao DY (2020) Down-regulation of spinal 5-HT2A and 5-HT2C receptors contributes to somatic hyperalgesia induced by orofacial inflammation combined with stress. Neuroscience 440:196–209. https://doi.org/10.1016/j.neuroscience.2020.05.044

    Article  CAS  PubMed  Google Scholar 

  23. Xu GZ, Xue Y, Wei SQ, Li JH, Traub RJ, Wang MD, Cao DY (2019) Valproate reverses stress-induced somatic hyperalgesia and visceral hypersensitivity by up-regulating spinal 5-HT2C receptor expression in female rats. Neuropharmacology 165:107926. https://doi.org/10.1016/j.neuropharm.2019.107926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou L, He B, Deng J, Pang S, Tang H (2019) Histone acetylation promotes long-lasting defense responses and longevity following early life heat stress. PLoS Genet 15(4):e1008122. https://doi.org/10.1371/journal.pgen.1008122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao DY, Bai G, Ji Y, Karpowicz JM, Traub RJ (2016) Express: histone hyperacetylation modulates spinal type II metabotropic glutamate receptor alleviating stress-induced visceral hypersensitivity in female rats. Mol Pain. https://doi.org/10.1177/1744806916660722

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nakai K, Nakae A, Oba S, Mashimo T, Ueda K (2010) 5-HT2C receptor agonists attenuate pain-related behaviour in a rat model of trigeminal neuropathic pain. Eur J Pain 14(10):999–1006. https://doi.org/10.1016/j.ejpain.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  27. Obata H, Saito S, Sakurazawa S, Sasaki M, Usui T, Goto F (2004) Antiallodynic effects of intrathecally administered 5-HT2C receptor agonists in rats with nerve injury. Pain 108(1–2):163–169. https://doi.org/10.1016/j.pain.2003.12.019

    Article  CAS  PubMed  Google Scholar 

  28. Morales M, Wang SD (2002) Differential composition of 5-hydroxytryptamine3 receptors synthesized in the rat cns and peripheral nervous system. J Neurosci 22(15):6732–6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo W, Miyoshi K, Dubner R, Gu M, Li M, Liu J, Yang J, Zou S, Ren K, Noguchi K, Wei F (2014) Spinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade. Mol Pain 10:35. https://doi.org/10.1186/1744-8069-10-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koca T, Kocyigit B, Seyithanoglu M, Berk E (2019) The importance of G-protein coupled estrogen receptor in patients with fibromyalgia. Arch Rheumatol 34(4):419–425. https://doi.org/10.5606/ArchRheumatol.2019.7236

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wise EA, Riley JL III, Robinson ME (2000) Clinical pain perception and hormone replacement therapy in postmenopausal women experiencing orofacial pain. Clin J Pain 16(2):121–126. https://doi.org/10.1097/00002508-200006000-00005

    Article  CAS  PubMed  Google Scholar 

  32. Taylor AG, Fischer-White TG, Anderson JG, Adelstein KE, Murugesan M, Lewis JE, Scott MM, Gaykema RP, Goehler LE (2016) Stress, inflammation and pain: A potential role for monocytes in fibromyalgia-related symptom severity. Stress Health 32(5):503–513. https://doi.org/10.1002/smi.2648

    Article  PubMed  Google Scholar 

  33. Coppens E, Kempke S, Van Wambeke P, Claes S, Morlion B, Luyten P, Van Oudenhove L (2018) Cortisol and subjective stress responses to acute psychosocial stress in fibromyalgia patients and control participants. Psychosom Med 80(3):317–326. https://doi.org/10.1097/PSY.0000000000000551

    Article  CAS  PubMed  Google Scholar 

  34. Lei J, Liu MQ, Fu KY (2016) Disturbed sleep, anxiety and stress are possible risk indicators for temporomandibular disorders with myofascial pain. Beijing Da Xue Xue Bao Yi Xue Ban 48(4):692–696

    PubMed  Google Scholar 

  35. Marpaung C, Lobbezoo F, van Selms MKA (2018) Temporomandibular disorders among dutch adolescents: Prevalence and biological, psychological, and social risk indicators. Pain Res Manag 2018:5053709. https://doi.org/10.1155/2018/5053709

    Article  PubMed  PubMed Central  Google Scholar 

  36. Casale R, Sarzi-Puttini P, Botto R, Alciati A, Batticciotto A, Marotto D, Torta R (2019) Fibromyalgia and the concept of resilience. Clin Exp Rheumatol 37(Suppl 116):105–113

    PubMed  Google Scholar 

  37. Ayouni I, Chebbi R, Hela Z, Dhidah M (2019) Comorbidity between fibromyalgia and temporomandibular disorders: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol 128(1):33–42. https://doi.org/10.1016/j.oooo.2019.02.023

    Article  PubMed  Google Scholar 

  38. Lin CR, Cheng JK, Wu CH, Chen KH, Liu CK (2017) Epigenetic suppression of potassium-chloride co-transporter 2 expression in inflammatory pain induced by complete freund’s adjuvant (CFA). Eur J Pain 21(2):309–321. https://doi.org/10.1002/ejp.925

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Z, Cai YQ, Zou F, Bie B, Pan ZZ (2011) Epigenetic suppression of GAD65 expression mediates persistent pain. Nat Med 17(11):1448–1455. https://doi.org/10.1038/nm.2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Danaher RJ, Zhang L, Donley CJ, Laungani NA, Hui SE, Miller CS, Westlund KN (2018) Histone deacetylase inhibitors prevent persistent hypersensitivity in an orofacial neuropathic pain model. Mol Pain 14:1744806918796763. https://doi.org/10.1177/1744806918796763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schaefer EW, Loaiza-Bonilla A, Juckett M, DiPersio JF, Roy V, Slack J, Wu W, Laumann K, Espinoza-Delgado I, Gore SD, Mayo PCPIIC (2009) A phase 2 study of vorinostat in acute myeloid leukemia. Haematologica 94(10):1375–1382. https://doi.org/10.3324/haematol.2009.009217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Imbe H, Kimura A (2018) Increase of histone acetylation in the gabaergic neurons in the rostral ventromedial medulla associated with mechanical hypersensitivity after repeated restraint stress. Brain Res Bull 142:394–402. https://doi.org/10.1016/j.brainresbull.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  43. Imbe H, Kimura A (2016) Repeated forced swim stress affects the expression of pCREB and deltaFosB and the acetylation of histone H3 in the rostral ventromedial medulla and locus coeruleus. Brain Res Bull 127:11–22. https://doi.org/10.1016/j.brainresbull.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  44. Imbe H, Kimura A (2015) Repeated forced swim stress prior to complete freund’s adjuvant injection enhances mechanical hyperalgesia and attenuates the expression of pCREB and deltaFosB and the acetylation of histone H3 in the insular cortex of rat. Neuroscience 301:12–25. https://doi.org/10.1016/j.neuroscience.2015.05.065

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki R, Rygh LJ, Dickenson AH (2004) Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci 25(12):613–617. https://doi.org/10.1016/j.tips.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  46. Cortes-Altamirano JL, Olmos-Hernandez A, Jaime HB, Carrillo-Mora P, Bandala C, Reyes-Long S, Alfaro-Rodriguez A (2018) Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 receptors and their role in the modulation of pain response in the central nervous system. Curr Neuropharmacol 16(2):210–221. https://doi.org/10.2174/1570159X15666170911121027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tao ZY, Wang PX, Wei SQ, Traub RJ, Li JF, Cao DY (2019) The role of descending pain modulation in chronic primary pain: potential application of drugs targeting serotonergic system. Neural Plast. https://doi.org/10.1155/2019/1389296

    Article  PubMed  PubMed Central  Google Scholar 

  48. Obata H, Ito N, Sasaki M, Saito S, Goto F (2007) Possible involvement of spinal noradrenergic mechanisms in the antiallodynic effect of intrathecally administered 5-HT2C receptor agonists in the rats with peripheral nerve injury. Eur J Pharmacol 567(1–2):89–94. https://doi.org/10.1016/j.ejphar.2007.03.029

    Article  CAS  PubMed  Google Scholar 

  49. Xu WJ, Wang YY, Zhao Y, Jia H, Tang JS, Huo FQ, Liu H (2020) Involvement of 5-HT2A, 5-HT2B and 5-HT2C receptors in mediating the ventrolateral orbital cortex-induced antiallodynia in a rat model of neuropathic pain. NeuroReport 31(2):167–173. https://doi.org/10.1097/WNR.0000000000001377

    Article  CAS  PubMed  Google Scholar 

  50. Baptista-de-Souza D, Pelarin V, Canto-de-Souza L, Nunes-de-Souza RL, Canto-de-Souza A (2018) Interplay between 5-HT2C and 5-HT1A receptors in the dorsal periaqueductal gray in the modulation of fear-induced antinociception in mice. Neuropharmacology 140:100–106. https://doi.org/10.1016/j.neuropharm.2018.07.027

    Article  CAS  PubMed  Google Scholar 

  51. de Oliveira R, de Oliveira RC, Falconi-Sobrinho LL, da Silva Soares R Jr, Coimbra NC (2017) 5-hydroxytryptamine2A/2C receptors of nucleus raphe magnus and gigantocellularis/paragigantocellularis pars alpha reticular nuclei modulate the unconditioned fear-induced antinociception evoked by electrical stimulation of deep layers of the superior colliculus and dorsal periaqueductal grey matter. Behav Brain Res 316:294–304. https://doi.org/10.1016/j.bbr.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  52. Gregoire S, Neugebauer V (2013) 5-HT2CR blockade in the amygdala conveys analgesic efficacy to ssris in a rat model of arthritis pain. Mol Pain 9:41. https://doi.org/10.1186/1744-8069-9-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ji G, Zhang W, Mahimainathan L, Narasimhan M, Kiritoshi T, Fan X, Wang J, Green TA, Neugebauer V (2017) 5-HT2C receptor knockdown in the amygdala inhibits neuropathic-pain-related plasticity and behaviors. J Neurosci 37(6):1378–1393. https://doi.org/10.1523/JNEUROSCI.2468-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kayser V, Elfassi IE, Aubel B, Melfort M, Julius D, Gingrich JA, Hamon M, Bourgoin S (2007) Mechanical, thermal and formalin-induced nociception is differentially altered in 5-HT1A-/-, 5-HT1B-/-, 5-HT2A-/-, 5-HT3A-/- and 5-HTT-/- knock-out male mice. Pain 130(3):235–248. https://doi.org/10.1016/j.pain.2006.11.015

    Article  CAS  PubMed  Google Scholar 

  55. Zeitz KP, Guy N, Malmberg AB, Dirajlal S, Martin WJ, Sun L, Bonhaus DW, Stucky CL, Julius D, Basbaum AI (2002) The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci 22(3):1010–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rahman W, Suzuki R, Rygh LJ, Dickenson AH (2004) Descending serotonergic facilitation mediated through rat spinal 5-HT3 receptors is unaltered following carrageenan inflammation. Neurosci Lett 361(1–3):229–231. https://doi.org/10.1016/j.neulet.2003.12.069

    Article  CAS  PubMed  Google Scholar 

  57. Wang W, Zhong X, Li Y, Guo R, Du S, Wen L, Ying Y, Yang T, Wei XH (2019) Rostral ventromedial medulla-mediated descending facilitation following P2X7 receptor activation is involved in the development of chronic post-operative pain. J Neurochem 149(6):760–780. https://doi.org/10.1111/jnc.14650

    Article  CAS  PubMed  Google Scholar 

  58. Greenwood-Van Meerveld B, Mohammadi E, Tyler K, Pietra C, Bee LA, Dickenson A (2014) Synergistic effect of 5-hydroxytryptamine 3 and neurokinin 1 receptor antagonism in rodent models of somatic and visceral pain. J Pharmacol Exp Ther 351(1):146–152. https://doi.org/10.1124/jpet.114.216028

    Article  CAS  PubMed  Google Scholar 

  59. Chen Y, Oatway MA, Weaver LC (2009) Blockade of the 5-HT3 receptor for days causes sustained relief from mechanical allodynia following spinal cord injury. J Neurosci Res 87(2):418–424. https://doi.org/10.1002/jnr.21860

    Article  CAS  PubMed  Google Scholar 

  60. Donovan-Rodriguez T, Urch CE, Dickenson AH (2006) Evidence of a role for descending serotonergic facilitation in a rat model of cancer-induced bone pain. Neurosci Lett 393(2–3):237–242. https://doi.org/10.1016/j.neulet.2005.09.073

    Article  CAS  PubMed  Google Scholar 

  61. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Wurbel H (2020) The arrive guidelines 2.0: updated guidelines for reporting animal research. J Physiol 598(18):3793–3801. https://doi.org/10.1113/JP280389

    Article  CAS  PubMed  Google Scholar 

  62. Schiffman E, Ohrbach R, Truelove E, Look J, Anderson G, Goulet JP, List T, Svensson P, Gonzalez Y, Lobbezoo F, Michelotti A, Brooks SL, Ceusters W, Drangsholt M, Ettlin D, Gaul C, Goldberg LJ, Haythornthwaite JA, Hollender L, Jensen R, John MT, De Laat A, de Leeuw R, Maixner W, van der Meulen M, Murray GM, Nixdorf DR, Palla S, Petersson A, Pionchon P, Smith B, Visscher CM, Zakrzewska J, Dworkin SF International Rdc/Tmd Consortium Network IafDR, and Orofacial Pain Special Interest Group IAftSoP (2014) Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the international RDC/TMD consortium network* and orofacial pain special interest groupdagger. J Oral Facial Pain Headache 28(1):6–27. https://doi.org/10.11607/jop.1151

  63. Lobbezoo F, Drangsholt M, Peck C, Sato H, Kopp S, Svensson P (2004) Topical review: new insights into the pathology and diagnosis of disorders of the temporomandibular joint. J Orofac Pain 18(3):181–191

    PubMed  Google Scholar 

  64. Ambalavanar R, Moutanni A, Dessem D (2006) Inflammation of craniofacial muscle induces widespread mechanical allodynia. Neurosci Lett 399(3):249–254. https://doi.org/10.1016/j.neulet.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  65. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1):77–88. https://doi.org/10.1016/0304-3959(88)90026-7

    Article  CAS  PubMed  Google Scholar 

  66. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63. https://doi.org/10.1016/0165-0270(94)90144-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ms. Holly Ross (Department of Neural and Pain Sciences, University of Maryland School of Dentistry) for English reading and editing.

Funding

This work was supported by the National Natural Science Foundation of China (81971049, 81671097) and the Social Development Program of Shaanxi Province, China (2020SF-018).

Author information

Authors and Affiliations

Authors

Contributions

DYC designed the study, ZYT, XYQ, and SQW performed the experiments. GB analyzed the data and edited the paper. ZYT, JFL, and DYC analyzed the data and wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jin-Feng Li or Dong-Yuan Cao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Experimental protocols were approved by the Institutional Animal Care and Use Committees of Xi’an Jiaotong University, China (No. 2016-006).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11064_2022_3540_MOESM1_ESM.eps

Supplementary material 1 SAHA did not affect the thermal withdrawal latency and mechanical withdrawal threshold in rats in the E2 + non-FS group and the E2 + saline + non-FS group (EPS 47.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, ZY., Qiu, XY., Wei, SQ. et al. SAHA Inhibits Somatic Hyperalgesia Induced by Stress Combined with Orofacial Inflammation Through Targeting Different Spinal 5-HT Receptor Subtypes. Neurochem Res 47, 1405–1418 (2022). https://doi.org/10.1007/s11064-022-03540-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03540-0

Keywords

Navigation