Skip to main content

Advertisement

Log in

Potential Protective Effect of Coenzyme Q10 on Doxorubicin-Induced Neurotoxicity and Behavioral Disturbances in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the potential neuroprotective efficacy of coenzyme Q10 (CoQ10) against doxorubicin (DOX) -induced behavioral disturbances in rats. Female rats were randomly assigned into 4 groups as control, CoQ10, DOX, and DOX plus CoQ10. The CoQ10 groups received CoQ10 (200 mg kg−1) for 21 days, and the DOX groups received DOX (4 mg kg−1) on days 7 and 14 of the study. The open field (OF) and elevated plus maze (EPM) tests were performed to assess locomotor activity and anxiety levels. Additionally, malondialdehyde (MDA), and protein carbonyl (PC) levels and acetylcholinesterase (AChE), and glutathione peroxidase (GPx) activities and total antioxidant capacity (TAC) were quantified in brain tissue. DOX administration caused alterations in locomotor activity, and anxiety-like behaviors. Moreover, DOX produced significant elevation in AChE activity . PC level and GPx activity tended to alter with DOX administration. Co-treatment with CoQ10 significantly attenuated DOX-induced behavioral alterations via improving AChE activity in the brain tissue of rats. CoQ10 treatment may be potential for the alleviation of DOX-induced behavioral disturbances. This improvement might be due to the inhibition of AChE activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CoQ10:

Coenzyme Q10

DOX:

Doxorubicin

OF:

Open field

EPM:

Elevated plus maze

MDA:

Malondialdehyde

PC:

Protein carbonyl

GPx:

Glutathione peroxidase

TAC:

Total antioxidant capacity

AChE:

Acetylcholinesterase

References

  1. Ferguson RJ, Ahles TA (2003) Low neuropsychologic performance among adult cancer survivors treated with chemotherapy. Curr Neurol Neurosci Rep 3:215–222. https://doi.org/10.1007/s11910-003-0081-2

    Article  PubMed  Google Scholar 

  2. Yamada TH, Denburg NL, Beglinger LJ, Schultz SK (2010) Neuropsychological outcomes of older breast cancer survivors: cognitive features ten or more years after chemotherapy. J Neuropsychiatry Clin Neurosci 22:48–54. https://doi.org/10.1176/jnp.2010.22.1.48

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mounier NM, Abdel-Maged AE, Wahdan SA, Gad AM, Azab SS (2020) Chemotherapy-induced cognitive impairment (CICI): an overview of etiology and pathogenesis. Life Sci 258:118071. https://doi.org/10.1016/j.lfs.2020.118071

    Article  CAS  PubMed  Google Scholar 

  4. Aluise CD, Sultana R, Tangpong J, Vore M, St Clair D, Moscow JA, Butterfield DA (2010) Chemo brain (chemo fog) as a potential side effect of doxorubicin administration: role of cytokine-induced, oxidative/nitrosative stress in cognitive dysfunction. Adv Exp Med Biol 678:147–156. https://doi.org/10.1007/978-1-4419-6306-2_19

    Article  CAS  PubMed  Google Scholar 

  5. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genom 21:440–446. https://doi.org/10.1097/FPC.0b013e32833ffb56

    Article  CAS  Google Scholar 

  6. Cardoso CV, de Barros MP, Bachi ALL, Bernardi MM, Kirsten TB et al (2020) Chemobrain in rats: behavioral, morphological, oxidative and inflammatory effects of doxorubicin administration. Behav Brain Res 378:112233. https://doi.org/10.1016/j.bbr.2019.112233

    Article  CAS  PubMed  Google Scholar 

  7. Tangpong J, Cole MP, Sultana R, Joshi G, Estus S, Vore M, St Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA (2006) Adriamycin-induced, TNF-alpha-mediated central nervous system toxicity. Neurobiol Dis 23:127–139. https://doi.org/10.1016/j.nbd.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  8. Christie LA, Acharya MM, Parihar VK, Nguyen A, Martirosian V, Limoli CL (2012) Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res 18:1954–1965. https://doi.org/10.1158/1078-0432.CCR-11-2000

    Article  CAS  PubMed  Google Scholar 

  9. El-Agamy SE, Abdel-Aziz AK, Esmat A, Azab SS (2019) Chemotherapy and cognition: comprehensive review on doxorubicin-induced chemobrain. Cancer Chemother Pharmacol 84:1–14. https://doi.org/10.1007/s00280-019-03827-0

    Article  CAS  PubMed  Google Scholar 

  10. Varela-López A, Battino M, Navarro-Hortal MD, Giampieri F, Forbes-Hernández TY, Romero-Márquez JM, Collado R, Quiles JL (2019) An update on the mechanisms related to cell death and toxicity of doxorubicin and the protective role of nutrients. Food Chem Toxicol 134:110834. https://doi.org/10.1016/j.fct.2019.110834

    Article  PubMed  Google Scholar 

  11. Ali MA, Menze ET, Tadros MG, Tolba MF (2020) Caffeic acid phenethyl ester counteracts doxorubicin-induced chemobrain in Sprague-Dawley rats: emphasis on the modulation of oxidative stress and neuroinflammation. Neuropharmacology 181:108334. https://doi.org/10.1016/j.neuropharm.2020.108334

    Article  CAS  PubMed  Google Scholar 

  12. Botelho AFM, Lempek MR, Branco SEMT, Nogueira MM, de Almeida ME, Costa AG, Freitas TG, Rocha MCRC, Moreira MVL, Barreto TO, Santos JC, Lavalle G, Melo MM (2020) Coenzyme Q10 cardioprotective effects against doxorubicin-induced cardiotoxicity in Wistar rat. Cardiovasc Toxicol 20:222–234. https://doi.org/10.1007/s12012-019-09547-4

    Article  CAS  PubMed  Google Scholar 

  13. Chen PY, Hou CW, Shibu MA, Day CH, Pai P, Liu ZR, Lin TY, Viswanadha VP, Kuo CH, Huang CY (2017) Protective effect of co-enzyme Q10 on doxorubicin-induced cardiomyopathy of rat hearts. Environ Toxicol 32:679–689. https://doi.org/10.1002/tox.22270

    Article  CAS  PubMed  Google Scholar 

  14. Cheruku SP, Ramalingayya GV, Chamallamudi MR, Biswas S, Nandakumar K, Nampoothiri M, Gourishetti K, Kumar N (2018) Catechin ameliorates doxorubicin-induced neuronal cytotoxicity in in vitro and episodic memory deficit in in vivo in Wistar rats. Cytotechnology 70:245–259. https://doi.org/10.1007/s10616-017-0138-8

    Article  CAS  PubMed  Google Scholar 

  15. El-Agamy SE, Abdel-Aziz AK, Wahdan S, Esmat A, Azab SS (2018) Astaxanthin ameliorates doxorubicin-induced cognitive impairment (Chemobrain) in experimental rat model: impact on oxidative, inflammatory, and apoptotic machineries. Mol Neurobiol 55:5727–5740. https://doi.org/10.1007/s12035-017-0797-7

    Article  CAS  PubMed  Google Scholar 

  16. Konat GW, Kraszpulski M, James I, Zhang HT, Abraham J (2008) Cognitive dysfunction induced by chronic administration of common cancer chemotherapeutics in rats. Metab Brain Dis 23:325–333. https://doi.org/10.1007/s11011-008-9100-y

    Article  CAS  PubMed  Google Scholar 

  17. Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20:591–598. https://doi.org/10.1080/07315724.2001.10719063

    Article  CAS  PubMed  Google Scholar 

  18. Mancuso M, Orsucci D, Volpi L, Calsolaro V, Siciliano (2010) Coenzyme Q10 in neuromuscular and neurodegenerative disorders. Curr Drug Targets 11:111–121. https://doi.org/10.2174/138945010790031018

    Article  CAS  PubMed  Google Scholar 

  19. Turunen M, Olsson J, Dallner G (2003) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660:171–199. https://doi.org/10.1016/j.bbamem.2003.11.012

    Article  CAS  Google Scholar 

  20. Gutierrez-Mariscal FM, Yubero-Serrano EM, Villalba JM, Lopez-Miranda J (2019) Coenzyme Q10: from bench to clinic in aging diseases, a translational review. Crit Rev Food Sci Nutr 59:2240–2257. https://doi.org/10.1080/10408398.2018.1442316

    Article  CAS  PubMed  Google Scholar 

  21. Spindler M, Beal MF, Henchcliffe C (2009) Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatr Dis Treat 5:597–610. https://doi.org/10.2147/ndt.s5212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang X, Zhang Y, Xu H, Luo X, Yu J, Liu J, Chang RC (2016) Neuroprotection of coenzyme Q10 in neurodegenerative diseases. Curr Top Med Chem 16:858–866. https://doi.org/10.2174/1568026615666150827095252

    Article  CAS  PubMed  Google Scholar 

  23. Ishrat T, Khan MB, Hoda MN, Yousuf S, Ahmad M, Ansari MA, Ahmad AS, Islam F (2006) Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav Brain Res 171:9–16. https://doi.org/10.1016/j.bbr.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  24. Valls-Belles V, Torres C, Muñiz P, Codoñer-Franch P (2010) Effect of beer consumption on levels of complex I and complex IV liver and heart mitochondrial enzymes and coenzymes Q9 and Q10 in adriamycin-treated rats. Eur J Nutr 49:181–187. https://doi.org/10.1007/s00394-009-0064-4

    Article  CAS  PubMed  Google Scholar 

  25. El-Sheikh AA, Morsy MA, Mahmoud MM, Rifaai RA, Abdelrahman AM (2012) Effect of coenzyme-q10 on doxorubicin-induced nephrotoxicity in rats. Adv Pharmacol Sci 2012:981461. https://doi.org/10.1155/2012/981461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. El-Sheikh AA, Morsy MA, Mahmoud MM, Rifaai RA (2014) Protective mechanisms of coenzyme-Q10 may involve up-regulation of testicular P-glycoprotein in doxorubicin-induced toxicity. Environ Toxicol Pharmacol 37:772–781. https://doi.org/10.1016/j.etap.2014.02.010

    Article  CAS  PubMed  Google Scholar 

  27. Philpot RM, Ficken M, Wecker L (2016) Doxorubicin and cyclophosphamide lead to long-lasting impairment of spatial memory in female, but not male mice. Behav Brain Res 307:165–175. https://doi.org/10.1016/j.bbr.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  28. Nasoohi S, Simani L, Khodagholi F, Nikseresht S, Faizi M, Naderi N (2019) Coenzyme Q10 supplementation improves acute outcomes of stroke in rats pretreated with atorvastatin. Nutr Neurosci 22:264–272. https://doi.org/10.1080/1028415X.2017.1376928

    Article  CAS  PubMed  Google Scholar 

  29. Prajapati SK, Garabadu D, Krishnamurthy S (2017) Coenzyme Q10 prevents mitochondrial dysfunction and facilitates pharmacological activity of atorvastatin in 6-OHDA induced dopaminergic toxicity in rats. Neurotox Res 31:478–492. https://doi.org/10.1007/s12640-016-9693-6

    Article  PubMed  Google Scholar 

  30. Kitamura Y, Ushio S, Sumiyoshi Y, Wada Y, Miyazaki I, Asanuma M, Sendo T (2021) N-Acetylcysteine attenuates the anxiety-like behavior and spatial cognition impairment induced by doxorubicin and cyclophosphamide combination treatment in rats. Pharmacology 106:286–293. https://doi.org/10.1159/000512117

    Article  CAS  PubMed  Google Scholar 

  31. Liedke PE, Reolon GK, Kilpp B, Brunetto AL, Roesler R, Schwartsmann G (2009) Systemic administration of doxorubicin impairs aversively motivated memory in rats. Pharmacol Biochem Behav 94:239–243. https://doi.org/10.1016/j.pbb.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  32. Belviranlı M, Okudan N (2018) Exercise training protects against aging-induced cognitive dysfunction via activation of the hippocampal PGC-1α/FNDC5/BDNF pathway. Neuromolecular Med 20:386–400. https://doi.org/10.1007/s12017-018-8500-3

    Article  CAS  PubMed  Google Scholar 

  33. Belviranlı M, Okudan N (2019) Voluntary, involuntary and forced exercises almost equally reverse behavioral impairment by regulating hippocampal neurotrophic factors and oxidative stress in experimental Alzheimer’s disease model. Behav Brain Res 364:245–255. https://doi.org/10.1016/j.bbr.2019.02.030

    Article  CAS  PubMed  Google Scholar 

  34. Mijailovic N, Selakovic D, Joksimovic J, Mihailovic V, Katanic J, Jakovljevic V, Nikolic T, Bolevich S, Zivkovic V, Pantic M, Rosic G (2019) The anxiolytic effects of atorvastatin and simvastatin on dietary-induced increase in homocysteine levels in rats. Mol Cell Biochem 452:199–217. https://doi.org/10.1007/s11010-018-3425-6

    Article  CAS  PubMed  Google Scholar 

  35. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  36. Xu G, Lu H, Dong Y, Shapoval D, Soriano SG, Liu X, Zhang Y, Xie Z (2017) Coenzyme Q10 reduces sevoflurane-induced cognitive deficiency in young mice. Br J Anaesth 119:481–491. https://doi.org/10.1093/bja/aex071

    Article  CAS  PubMed  Google Scholar 

  37. Yang M, Lian N, Yu Y, Wang Y, Xie K, Yu Y (2020) Coenzyme Q10 alleviates sevoflurane-induced neuroinflammation by regulating the levels of apolipoprotein E and phosphorylated tau protein in mouse hippocampal neurons. Mol Med Rep 22:445–453. https://doi.org/10.3892/mmr.2020.11131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ibrahim Fouad G (2020) Combination of omega 3 and coenzyme Q10 exerts neuroprotective potential against hypercholesterolemia-induced Alzheimer’s-Like disease in rats. Neurochem Res 45:1142–1155. https://doi.org/10.1007/s11064-020-02996-2

    Article  CAS  PubMed  Google Scholar 

  39. Alhusaini A, Hasan IH, Alrumayyan B, Alesikri M, Alanazi K, Almasoud R, Almarshad S (2020) Neuroprotective efficacy of nano-CoQ against propionic acid toxicity in rats: role of BDNF and CREB protein expressions. J Biochem Mol Toxicol 34:e22449. https://doi.org/10.1002/jbt.22449

    Article  CAS  PubMed  Google Scholar 

  40. Yousef AO, Fahad A et al (2019) The neuroprotective role of coenzyme Q10 against lead acetate-induced neurotoxicity is mediated by antioxidant, anti-inflammatory and anti-apoptotic activities. Int J Environ Res Public Health 16:2895. https://doi.org/10.3390/ijerph16162895

    Article  CAS  Google Scholar 

  41. Sharma A, Kshetrimayum C, Sadhu HG, Kumar S (2018) Arsenic-induced oxidative stress, cholinesterase activity in the brain of Swiss albino mice, and its amelioration by antioxidants vitamin E and coenzyme Q10. Environ Sci Pollut Res Int 25:23946–23953. https://doi.org/10.1007/s11356-018-2398-z

    Article  CAS  PubMed  Google Scholar 

  42. Aziriova S, Repova Bednarova K, Krajcirovicova K, Hrenak J, Rajkovicova R, Arendasova K, Kamodyova N, Celec P, Zorad S, Adamcova M, Paulis L, Simko F (2014) Doxorubicin-induced behavioral disturbances in rats: protective effect of melatonin and captopril. Pharmacol Biochem Behav 124:284–289. https://doi.org/10.1016/j.pbb.2014.06.021

    Article  CAS  PubMed  Google Scholar 

  43. Kitamura Y, Hattori S, Yoneda S, Watanabe S, Kanemoto E, Sugimoto M, Kawai T, Machida A, Kanzaki H, Miyazaki I, Asanuma M, Sendo T (2015) Doxorubicin and cyclophosphamide treatment produces anxiety-like behavior and spatial cognition impairment in rats: possible involvement of hippocampal neurogenesis via brain-derived neurotrophic factor and cyclin D1 regulation. Behav Brain Res 292:184–193. https://doi.org/10.1016/j.bbr.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  44. Rodynskii OG, Kozlova YV, Rodynska KSV, Sapozhnychenko LV (2018) Doxorubicin-induced cardiomyopathy in rats: Behavior of the animals in the open field. Neurophysiology 50:259–265. https://doi.org/10.1007/s11062-018-9747-x

    Article  CAS  Google Scholar 

  45. Salas-Ramirez KY, Bagnall C, Frias L, Abdali SA, Ahles TA, Hubbard K (2015) Doxorubicin and cyclophosphamide induce cognitive dysfunction and activate the ERK and AKT signaling pathways. Behav Brain Res 292:133–141. https://doi.org/10.1016/j.bbr.2015.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elipenahli C, Stack C, Jainuddin S, Gerges M, Yang L, Starkov A, Beal MF, Dumont M (2012) Behavioral improvement after chronic administration of coenzyme Q10 in P301S transgenic mice. J Alzheimers Dis 28:173–182. https://doi.org/10.3233/JAD-2011-111190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kitamura Y, Kanemoto E, Sugimoto M, Machida A, Nakamura Y, Naito N, Kanzaki H, Miyazaki I, Asanuma M, Sendo T (2017) Influence of nicotine on doxorubicin and cyclophosphamide combination treatment-induced spatial cognitive impairment and anxiety-like behavior in rats. Naunyn Schmiedebergs Arch Pharmacol 390:369–378. https://doi.org/10.1007/s00210-016-1338-z

    Article  CAS  PubMed  Google Scholar 

  48. Nakamura Y, Kitamura Y, Sumiyoshi Y, Naito N, Kan S, Ushio S, Miyazaki I, Asanuma M, Sendo T (2018) Involvement of 5-HT2A receptor hyperfunction in the anxiety-like behavior induced by doxorubicin and cyclophosphamide combination treatment in rats. J Pharmacol Sci 138:192–197. https://doi.org/10.1016/j.jphs.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  49. Merzoug S, Toumi ML, Boukhris N, Baudin B, Tahraoui A (2011) Adriamycin-related anxiety-like behavior, brain oxidative stress and myelotoxicity in male Wistar rats. Pharmacol Biochem Behav 99:639–647. https://doi.org/10.1016/j.pbb.2011.06.015

    Article  CAS  PubMed  Google Scholar 

  50. Aboul-Fotouh S (2013) Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats. Pharmacol Biochem Behav 104:105–112. https://doi.org/10.1016/j.pbb.2012.12.027

    Article  CAS  PubMed  Google Scholar 

  51. Binukumar BK, Gupta N, Sunkaria A, Kandimalla R, Wani WY, Sharma DR, Bal A, Gill KD (2012) Protective efficacy of coenzyme Q10 against DDVP-induced cognitive impairments and neurodegeneration in rats. Neurotox Res 21:345–357. https://doi.org/10.1007/s12640-011-9289-0

    Article  CAS  PubMed  Google Scholar 

  52. Zhu ZG, Sun MX, Zhang WL, Wang WW, Jin YM, Xie CL (2017) The efficacy and safety of coenzyme Q10 in Parkinson’s disease: a meta-analysis of randomized controlled trials. Neurol Sci 38:215–224. https://doi.org/10.1007/s10072-016-2757-9

    Article  PubMed  Google Scholar 

  53. Myers JS, Pierce J, Pazdernik T (2008) Neurotoxicology of chemotherapy in relation to cytokine release, the blood-brain barrier, and cognitive impairment. Oncol Nurs Forum 35:916–920. https://doi.org/10.1188/08.ONF.916-920

    Article  PubMed  Google Scholar 

  54. Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80:194–210. https://doi.org/10.1016/j.nlm.2003.07.003

    Article  CAS  PubMed  Google Scholar 

  55. Philpot RM, Ficken M, Johns BE, Engberg ME, Wecker L (2019) Spatial memory deficits in mice induced by chemotherapeutic agents are prevented by acetylcholinesterase inhibitors. Cancer Chemother Pharmacol 84:579–589. https://doi.org/10.1007/s00280-019-03881-8

    Article  CAS  PubMed  Google Scholar 

  56. Singh A, Kumar A (2015) Microglial inhibitory mechanism of coenzyme Q10 against Aβ (1–42) induced cognitive dysfunctions: possible behavioral, biochemical, cellular, and histopathological alterations. Front Pharmacol 6:268. https://doi.org/10.3389/fphar.2015.00268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Belousova M, Tokareva OG, Gorodetskaya E, Kalenikova EI, Medvedev OS (2016) Intravenous treatment with coenzyme Q10 improves neurological outcome and reduces infarct volume after transient focal brain ischemia in rats. J Cardiovasc Pharmacol 67:103–109. https://doi.org/10.1097/FJC.0000000000000320

    Article  CAS  PubMed  Google Scholar 

  58. Bannerman DM, Sprengel R, Sanderson DJ, McHugh SB, Rawlins JN, Monyer H, Seeburg PH (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15:181–192. https://doi.org/10.1038/nrn3677

    Article  CAS  PubMed  Google Scholar 

  59. Liao D, Xiang D, Dang R, Xu P, Wang J, Han W, Fu Y, Yao D, Cao L, Jiang P (2018) Neuroprotective effects of dl-3-n-butylphthalide against doxorubicin-induced neuroinflammation, oxidative stress, endoplasmic reticulum stress, and behavioral changes. Oxid Med Cell Longev 2018:9125601. https://doi.org/10.1155/2018/9125601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pal S, Ahir M, Sil PC (2012) Doxorubicin-induced neurotoxicity is attenuated by a 43-kD protein from the leaves of Cajanus indicus L. via NF-κB and mitochondria dependent pathways. Free Radic Res 46:785–798. https://doi.org/10.3109/10715762.2012.678841

    Article  CAS  PubMed  Google Scholar 

  61. Joshi G, Aluise CD, Cole MP, Sultana R, Pierce WM, Vore M, St Clair DK, Butterfield DA (2010) Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain. Neuroscience 166:796–807. https://doi.org/10.1016/j.neuroscience.2010.01.021

    Article  CAS  PubMed  Google Scholar 

  62. Rizk HA, Masoud MA, Maher O (2017) Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin-induced neurotoxicity in rats. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.21977

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muaz Belviranlı.

Ethics declarations

Conflict of interest

There is no conflict of interest—financial or otherwise—related to the material presented herein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okudan, N., Belviranlı, M. & Sezer, T. Potential Protective Effect of Coenzyme Q10 on Doxorubicin-Induced Neurotoxicity and Behavioral Disturbances in Rats. Neurochem Res 47, 1280–1289 (2022). https://doi.org/10.1007/s11064-021-03522-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03522-8

Keywords

Navigation