Skip to main content

Advertisement

Log in

Environmental Enrichment Differentially Activates Neural Circuits in FVB/N Mice, Inducing Social Interaction in Females but Agonistic Behavior in Males

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Environmental enrichment induces behavioral and structural modifications in rodents and influences the capability of mice to cope with stress. However, little is understood about hippocampal neurogenesis and the appearance of social/agonistic (aggressive) behavior upon activation of different neuronal circuits in FVB/N mice. Thus, in this study we hypothesized that environmental enrichment differentially regulates neurogenesis, neural circuit activation and social/agonistic behavior in male and female FVB/N mice. We explored the (1) neurogenic process as an indicative of neuroplasticity, (2) neuronal activation in the limbic system, and (3) social behavior using the resident-intruder test. On postnatal day 23 (PD23), mice were assigned to one of two groups: Standard Housing or Environmental Enrichment. At PD53, rodents underwent the resident-intruder test to evaluate social behaviors. Results revealed that environmental enrichment increased neurogenesis and social interaction in females. In males, environmental enrichment increased neurogenesis and agonistic behavior. Enriched male mice expressed higher levels of agonistic-related behavior than female mice housed under the same conditions. Neural circuit analysis showed lower activation in the amygdala of enriched males and higher activation in enriched females than their respective controls. Enriched females also showed higher activation in the frontal cortex without differences in male groups. Moreover, the insular cortex was less activated in females than in males. Thus, our results indicate that environmental enrichment has different effects on neuroplasticity and social/agonistic behavior in FVB/N mice, suggesting the relevance of sexual dimorphism in response to environmental stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The relevant data are within the manuscript. However, the datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nithianantharajah J, Hannan AJ (2009) The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol 89:369–382. https://doi.org/10.1016/j.pneurobio.2009.10.001

    Article  PubMed  Google Scholar 

  2. Greenough WT, Volkmar FR, Juraska JM (1973) Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Exp Neurol 41(2):371–378. https://doi.org/10.1016/0014-4886

    Article  CAS  PubMed  Google Scholar 

  3. Rojas JJ, Deniz BF, Miguel PM, Diaz R, Hermel E, Achaval M, Netto CA, Pereira LO (2013) Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia-ischemia in the rat. Exp Neurol 241:25–33. https://doi.org/10.1016/j.expneurol.2012.11.026

    Article  PubMed  Google Scholar 

  4. Ramírez-Rodríguez G, Ocaña-Fernández MA, Vega-Rivera NM, Torres-Pérez OM, Gómez-Sánchez A, Estrada-Camarena E, Ortiz-López L (2014) Environmental enrichment induces neuroplastic changes in middle age female BalbC mice and increases the hippocampal levels of BDNF, p-Akt and p-MAPK1/2. Neuroscience 260:158–170. https://doi.org/10.1016/j.neuroscience.2013.12.026

    Article  CAS  PubMed  Google Scholar 

  5. Fabel K, Wolf SA, Ehninger D, Babu H, Leal-Galicia P, Kempermann G (2009) Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci 3:50. https://doi.org/10.3389/neuro.22.002.2009

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kempermann G, Kuhn HG, Gage FH (1997) Genetic influence on neurogenesis in the dentate gyrus of adult mice. PNAS 94(19):10409–10414. https://doi.org/10.1073/pnas.94.19.10409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Neurosci 1(3):191–198. https://doi.org/10.1038/35044558

    Article  CAS  Google Scholar 

  8. Speisman RB, Kumar A, Rani A, Pastoriza JM, Severance JE, Foster TC, Ormerod BK (2013) Environmental enrichment restores neurogenesis and rapid acquisition in aged rats. Neurobiol Aging 34(1):263–274. https://doi.org/10.1016/j.neurobiolaging.2012.05.023

    Article  PubMed  Google Scholar 

  9. Schloesser RJ, Lehmann M, Martinowich K, Manji HK, Herkenham M (2010) Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol Psychiatr 15(12):1152–1163. https://doi.org/10.1038/mp.2010.34

    Article  CAS  Google Scholar 

  10. Llorens-Martín M, Tejeda GS, Trejo JL (2011) Antidepressant and proneurogenic influence of environmental enrichment in mice: protective effects vs recovery. Neuropsychopharmacol 36(12):2460–2468. https://doi.org/10.1038/npp.2011.134

    Article  Google Scholar 

  11. Vega-Rivera NM, Ortiz-López L, Gómez-Sánchez A, Oikawa-Sala J, Estrada-Camarena EM, Ramírez-Rodríguez GB (2016) The neurogenic effects of an enriched environment and its protection against the behavioral consequences of chronic mild stress persistent after enrichment cessation in six-month-old female Balb/C mice. Behav Brain Res 301:72–83. https://doi.org/10.1016/j.bbr.2015.12.028

    Article  PubMed  Google Scholar 

  12. Freund J, Brandmaier AM, Lewejohann L, Kirste I, Kritzler M, Krüger A, Sachser N, Lindenberger U, Kempermann G (2015) Association between exploratory activity and social individuality in genetically identical mice living in the same enriched environment. Neuroscience 19(309):140–152. https://doi.org/10.1016/j.neuroscience.2015.05.027

    Article  CAS  Google Scholar 

  13. Mesa-Gresa P, Pérez-Martinez A, Redolat R (2013) Environmental enrichment improves novel object recognition and enhances agonistic behavior in male mice. Aggressive behav 39(4):269–279. https://doi.org/10.1002/ab.21481

    Article  Google Scholar 

  14. McQuaid RJ, Audet MC, Anisman H (2012) Environmental enrichment in male CD-1 mice promotes aggressive behaviors and elevated corticosterone and brain norepinephrine activity in response to a mild stressor. Stress 15(3):354–360. https://doi.org/10.3109/10253890.2011.623249

    Article  CAS  PubMed  Google Scholar 

  15. McQuaid RJ, Audet MC, Jacobson-Pick S, Anisman H (2013) The differential impact of social defeat on mice living in isolation or groups in an enriched environment: plasma corticosterone and monoamine variations. Int J Neuropsychoph 16(2):351–363. https://doi.org/10.1017/S1461145712000120

    Article  CAS  Google Scholar 

  16. André V, Gau C, Scheideler A, Aguilar-Pimentel JA, Amarie OV, Becker L, Garrett L, Hans W, Hölter SM, Janik D, Moreth K, Neff F, Östereicher M, Racz I, Rathkolb B, Rozman J, Bekeredjian R, Graw J, Klingenspor M, Klopstock T, Hrabé de Angelis M (2018) Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. PLoS Biol. https://doi.org/10.1371/journal.pbio.2005019

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mkwanazi MV, Kanengoni AT, Chimonyo M (2019) Interaction effects of pen environment and sex on behavior, skin lesions and physiology of Windsnyer pigs. Asian Australas J Anim Sci 32(3):452–458. https://doi.org/10.5713/ajas.17.0417

    Article  PubMed  PubMed Central  Google Scholar 

  18. Abramov U, Puussaar T, Raud S, Kurrikoff K, Vasar E (2008) Behavioural differences between C57BL/6 and 129S6/SvEv strains are reinforced by environmental enrichment. Neurosc Lett 443(3):223–227. https://doi.org/10.1016/j.neulet.2008.07.075

    Article  CAS  Google Scholar 

  19. Giuliotti L, Benvenuti MN, Giannarelli A, Mariti C, Gazzano A (2019) Effect of different environment enrichments on behaviour and social interactions in growing pigs. Animals 9:101. https://doi.org/10.3390/ani9030101

    Article  PubMed Central  Google Scholar 

  20. Coutelliera L, Hanno W (2009) Early environmental cues affect object recognition memory in adult female but not male C57BL/6 mice. Behav Brain Res 203(2):312–315. https://doi.org/10.1016/j.bbr.2009.05.001

    Article  Google Scholar 

  21. Körholz JC, Zocher S, Grzyb AN, Morisse B, Poetzsch A, Ehret F, Schmied C, Kempermann G (2018) Selective increases in inter-individual variability in response to environmental enrichment in female mice. eLife. https://doi.org/10.7554/eLife.35690

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eltokhi A, Kurpiers B, Pitzer C (2020) Behavioral tests assessing neuropsychiatric phenotypes in adolescent mice reveal strain- and sex-specific effects. Sci Rep 10(1):11263. https://doi.org/10.1038/s41598-020-67758-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heinla I, Leidmaa E, Kongi K, Pennert A, Innos J, Nurk K, Tekko T, Singh K, Vanaveski T, Reimets R, Mandel M, Lang A, Lilleväli K, Kaasik A, Vasar E, Philips MA (2015) Gene expression patterns and environmental enrichment-induced effects in the hippocampi of mice suggest importance of Lsamp in plasticity. Front Neurosci 9:205. https://doi.org/10.3389/fnins.2015.00205

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dickson PE, Mittleman G (2021) Strain and sex dependent effects of isolation housing relative to environmental enrichment on operant sensation seeking in mice. Sci Rep 11(1):17826. https://doi.org/10.1038/s41598-021-97252-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giles JM, Whitaker JW, Moy SS, Fletcher CA (2018) Effect of Environmental Enrichment on Aggression in BALB/cJ and BALB/cByJ Mice Monitored by Using an Automated System. J Am Assoc Lab Anim Sci. https://doi.org/10.30802/AALAS-JAALAS-17-000122

    Article  PubMed  PubMed Central  Google Scholar 

  26. Heinla I, Leidmaa E, Visnapuu T, Philips MA, Vasar E (2014) Enrichment and individual housing reinforce the differences in aggressiveness and amphetamine response in 129S6/SvEv and C57BL/6 strains. Behav Brain Res 267:66–73. https://doi.org/10.1016/j.bbr.2014.03.024

    Article  CAS  PubMed  Google Scholar 

  27. Mesa-Gresa P, Ramos-Campos M, Redolat R (2021) Behavioral impact of experience based on environmental enrichment: influence of age and duration of exposure in male NMRI mice. Develop Psychobiol. https://doi.org/10.1002/dev.22093

    Article  Google Scholar 

  28. Audet MC, Anisman H (2010) Neuroendocrine and neurochemical impact of aggressive social interactions in submissive and dominant mice: implications for stress-related disorders. Int J Neuropsychoph 13(3):361–372. https://doi.org/10.1017/S1461145709990174

    Article  CAS  Google Scholar 

  29. Miczek KA, Takahashi A, Gobrogge KL, Hwa LS, de Almeida RM (2015) Escalated aggression in animal models: shedding new light on mesocorticolimbic circuits. Curr Opin Behav Sci 3:90–95. https://doi.org/10.1016/j.cobeha.2015.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ohline SM, Abraham WC (2019) Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacol 145(Pt A):3–12. https://doi.org/10.1016/j.neuropharm.2018.04.007

    Article  CAS  Google Scholar 

  31. Takahashi A, Miczek KA (2014) Neurogenetics of aggressive behavior: studies in rodents. Curr Topics Behav Neurosc 17:3–44. https://doi.org/10.1007/7854_2013_263

    Article  Google Scholar 

  32. Pérez-Cadahía B, Drobic B, Davie JR (2011) Activation and function of immediate-early genes in the nervous system. Biochimie et Biologie Cellulaire. https://doi.org/10.1139/O10-138

    Article  PubMed  Google Scholar 

  33. Kim JW, Nam SM, Yoo DY, Jung HY, Kim IY, Hwang IK, Seong JK, Yoon YS (2017) Comparison of adult hippocampal neurogenesis and susceptibility to treadmill exercise in nine mouse strains. Neural Plasticity. https://doi.org/10.1155/2017/5863258

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, Kirchhoff F, Kettenmann H (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33(1):72–86

    Article  CAS  PubMed  Google Scholar 

  35. Holder MK, Blaustein JD (2014) Puberty and adolescence as a time of vulnerability to stressors that alter neurobehavioral processes. Frontiers Neuroendocrinol 35(1):89–110. https://doi.org/10.1016/j.yfrne.2013.10.004

    Article  Google Scholar 

  36. Hueston CM, Cryan JF, Nolan YM (2017) Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators. Transl psychiatry 7(4):e1081. https://doi.org/10.1038/tp.2017.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27(8):447–452. https://doi.org/10.1016/j.tins.2004.05.013

    Article  CAS  PubMed  Google Scholar 

  38. Franklin and Paxinos (2008) The mouse brain in stereotaxic coordinates compact. Academic Press 3:256

    Google Scholar 

  39. Arabo A, Potier C, Ollivier G, Lorivel T, Roy V (2014) Temporal analysis of free exploration of an elevated plus-maze in mice. J Expt Psychol Anim Learn cognition 40(4):457–466. https://doi.org/10.1037/xan0000031s

    Article  Google Scholar 

  40. Burrows EL, Koyama L, May C, Hill-Yardin EL, Hannan AJ (2020) Environmental enrichment modulates affiliative and aggressive social behaviour in the neuroligin-3 R451C mouse model of autism spectrum disorder. Pharmacol Biochem Behav 195:172955. https://doi.org/10.1016/j.pbb.2020.172955

    Article  CAS  PubMed  Google Scholar 

  41. Simpson J, Kelly JP (2011) The impact of environmental enrichment in laboratory rats—behavioural and neurochemical aspects. Behav Brain Res 222(1):246–264. https://doi.org/10.1016/j.bbr.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  42. van der Geest JN, Spoor M, Frens MA (2021) Environmental enrichment improves vestibular oculomotor learning in mice. Front Behav Neurosci 15:676416. https://doi.org/10.3389/fnbeh.2021.676416

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lin EJ, Choi E, Liu X, Martin A, During MJ (2011) Environmental enrichment exerts sex-specific effects on emotionality in C57BL/6J mice. Behav Brain Res 216(1):349–357. https://doi.org/10.1016/j.bbr.2010.08.019

    Article  PubMed  Google Scholar 

  44. Clipperton-Allen AE, Cragg CL, Wood AJ, Pfaff DW, Choleris E (2010) Agonistic behavior in males and females: effects of an estrogen receptor beta agonist in gonadectomized and gonadally intact mice. Psychoneuroendocrinol 35(7):1008–1022. https://doi.org/10.1016/j.psyneuen.2010.01.002

    Article  CAS  Google Scholar 

  45. Velez L, Sokoloff G, Miczek KA, Palmer AA, Dulawa SC (2010) Differences in aggressive behavior and DNA copy number variants between BALB/cJ and BALB/cByJ substrains. Behav Genet 40(2):201–210. https://doi.org/10.1007/s10519-009-9325-5

    Article  PubMed  Google Scholar 

  46. Mark MD, Wollenweber P, Gesk A, Kösters K, Batzke K, Janoschka C, Maejima T, Han J, Deneris ES, Herlitze S (2019) RGS2 drives male aggression in mice via the serotonergic system. Comm Biol 2:373. https://doi.org/10.1038/s42003-019-0622-0

    Article  CAS  Google Scholar 

  47. Gabriel P, Mastracchio TA, Bordner K, Jeffrey R (2020) Impact of enriched environment during adolescence on adult social behavior, hippocampal synaptic density and dopamine D2 receptor expression in rats. Physiol Behav 226:113133

    Article  CAS  PubMed  Google Scholar 

  48. Grégoire CA, Bonenfant D, Le Nguyen A, Aumont A, Fernandes KJ (2014) Untangling the influences of voluntary running, environmental complexity, social housing and stress on adult hippocampal neurogenesis. PLoS One 9(1):e86237. https://doi.org/10.1371/journal.pone.0086237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yagi S, Splinter J, Tai D, Wong S, Wen Y, Galea L (2020) Sex differences in maturation and attrition of adult neurogenesis in the hippocampus. eNeuro. https://doi.org/10.1523/ENEURO.0468-19.2020

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jung EM, Ka M, Kim WY (2016) Loss of GSK-3 se. Mol Neurobiol 53(6):3954–3966. https://doi.org/10.1007/s12035-015-9326-8

    Article  CAS  PubMed  Google Scholar 

  51. Gebara E, Sultan S, Kocher-Braissant J, Toni N (2013) Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging. Front Neurosc 7:145. https://doi.org/10.1016/j.physbeh.2020.113133

    Article  CAS  Google Scholar 

  52. Overall Overall RW, Walker TL, Leiter O, Lenke S, Ruhwald S, Kempermann G (2013) Delayed and transient increase of adult hippocampal neurogenesis by physical exercise in DBA/2 mice. PLoS One 8(12):e83797. https://doi.org/10.1371/journal.pone.0083797

    Article  CAS  PubMed  Google Scholar 

  53. Singhal G, Morgan J, Jawahar MC, Corrigan F, Jaehne EJ, Toben C, Manavis J, Hannan AJ, Baune BT (2020) Duration of environmental enrichment determines astrocyte numsber and cervical lymph node T lymphocyte proportions but not the microglial number in middle-aged C57BL/6 Mice. Front Cell Neurosci 14:57. https://doi.org/10.3389/fncel.2020.00057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Williamson LL, Chao A, Bilbo SD (2012) Environmental enrichment alters glial antigen expression and neuroimmune function in the adult rat hippocampus. Brain Behav Immun 26(3):500–510. https://doi.org/10.1016/j.bbi.2012.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Silva BA, Burns AM, Gräff J (2019) A cFos activation map of remote fear memory attenuation. Psychopharmacology 236(1):369–381. https://doi.org/10.1007/s00213-018-5000-y

    Article  CAS  PubMed  Google Scholar 

  56. Golden SA, Jin M, Shaham Y (2019) Animal models of (or for) aggression reward, addiction, and relapse: behavior and circuits. J Neurosci 39(21):3996–4008. https://doi.org/10.1523/JNEUROSCI.0151-19.2019

    Article  PubMed  PubMed Central  Google Scholar 

  57. Covington, H. E., 3rd, Newman, E. L., Leonard, M. Z., Miczek, K. A (2019) Translational models of adaptive and excessive fighting: an emerging role for neural circuits in pathological aggression. F1000Research. https://doi.org/10.12688/f1000research.18883.1

  58. Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23(10):475–483. https://doi.org/10.1016/s0166-2236(00)01633-7

    Article  CAS  PubMed  Google Scholar 

  59. Wood JN, Grafman J (2003) Human prefrontal cortex: processing and representational perspectives. Nat Rev Neurosci 4(2):139–147. https://doi.org/10.1038/nrn1033

    Article  CAS  PubMed  Google Scholar 

  60. Wood JN, Romero SG, Makale M, Grafman J (2003) Category-specific representations of social and nonsocial knowledge in the human prefrontal cortex. J Cogn Neurosci 15(2):236–248. https://doi.org/10.1162/089892903321208178

    Article  CAS  PubMed  Google Scholar 

  61. Ongür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10(3):206–219. https://doi.org/10.1093/cercor/10.3.206

    Article  PubMed  Google Scholar 

  62. Croxson PL, Johansen-Berg H, Behrens TE, Robson MD, Pinsk MA, Gross CG, Richter W, Richter MC, Kastner S, Rushworth MF (2005) Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci 25(39):8854–8866. https://doi.org/10.1523/JNEUROSCI.1311-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wise SP (2008) Forward frontal fields: phylogeny and fundamental function. Trends Neurosci 31(12):599–608. https://doi.org/10.1016/j.tins.2008.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smagin Smagin DA, Park JH, Michurina TV, Peunova N, Glass Z, Sayed K, Bondar NP, Kovalenko IN, Kudryavtseva NN, Enikolopov G (2015) Altered hippocampal neurogenesis and amygdalar neuronal activity in adult mice with repeated experience of aggression. Front Neurosci 1(9):443. https://doi.org/10.3389/fnins.2015.00443

    Article  Google Scholar 

  65. Mohandass A, Krishnan V, Gribkova ED, Asuthkar S, Baskaran P, Nersesyan Y, Hussain Z, Wise LM, George RE, Stokes N, Alexander BM, Cohen AM, Pavlov EV, Llano DA, Zhu MX, Thyagarajan B, Zakharian E (2020) TRPM8 as the rapid testosterone signaling receptor: Implications in the regulation of dimorphic sexual and social behaviors. FASEB J 34(8):10887–10906. https://doi.org/10.1096/fj.202000794R

    Article  CAS  PubMed  Google Scholar 

  66. Merritt JR, Davis MT, Jalabert C, Libecap TJ, Williams DR, Soma KK, Maney DL (2018) Rapid effects of estradiol on aggression depend on genotype in a species with an estrogen receptor polymorphism. Hormones Behav 98:210–218. https://doi.org/10.1016/j.yhbeh.2017.11.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Diana Laura Acacio-Martínez and Mario Castro-García for technical assistance and support for software handling. We also thank Liliana Soto Gutiérrez for administrative procedures. We thank Dr. Martha León-Olea for allowing us to use the confocal microscopy facilities of the Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. The authors thank LCC. Jessica G. Norris for proofreading the English version of this manuscript.

Funding

This research was funded by INPRFM grant number 2000 to GBRR. Some of the equipment used in the present study was kindly financed by CONACYT (Grant Infraestructura 2015; 254773 to GBRR). S.O.H. was supported by INPRF-Programa Igualdad entre hombres y mujeres y Coordinado por INMujeres, SHCP y Cámara de Diputados, LXII.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, GBR-R, SOH, and NMV-R; methodology, EACM, and SOH; formal analysis, DMS-J; investigation, EACM, and SOH; resources, GBR-R, and DR-H; data curation, EACM, and DMS-J; methodology (confocal micrsocopy images), LO-L; writing—original draft preparation, EACM; writing—review and editing, GBR-R, and NMV-R; visualization, GBR-R; supervision, GBR-R; project administration, GBR-R; funding acquisition, GBR-R. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Gerardo Bernabé Ramírez Rodríguez.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

All institutional and legal regulations regarding animal ethics, care, and handling were performed following the Mexican Official Standard for animal care (NOM-062-ZOO-1999) and approved by the local Institutional Ethics Committee of the National Institute of Psychiatry “Ramón de la Fuente Muñiz” (IACUC: CEI/C/009/2013).

Consent for Publication

All authors read and approved the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera-Muñoz, E.A., Olvera-Hernández, S., Vega-Rivera, N.M. et al. Environmental Enrichment Differentially Activates Neural Circuits in FVB/N Mice, Inducing Social Interaction in Females but Agonistic Behavior in Males. Neurochem Res 47, 781–794 (2022). https://doi.org/10.1007/s11064-021-03487-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03487-8

Keywords

Navigation