Skip to main content

Advertisement

Log in

Neuroprotective Effect of Apigenin on Depressive-Like Behavior: Mechanistic Approach

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Apigenin, as a natural flavonoid present in several plants is characterized with potential anticancer, antioxidant, and anti-inflammatory properties. Recent studies proposed that apigenin affects depression disorder through unknown mechanistic pathways. The effects of apigenin’s anti-depressive properties on streptozocin-mediated depression have been investigated through the evaluation of behavioral tests, oxidative stress, cellular energy homeostasis and inflammatory responses. The results demonstrated anti-depressive properties of apigenin in behavioral test including forced swimming and splash tests and oxidative stress biomarkers such as reduced glutathione, lipid peroxidation, total antioxidant power and coenzyme Q10 levels. Apigenin, also, demonstrated its regulatory potency in cellular energy homeostasis and immune system gene expression through inhibiting Nlrp3 and Tlr4 overexpression. Furthermore, failure in energy production as the key factor in various psychiatric disorders was reversed by apigenin modulating effect on AMPK gene expression. Overall, 20 mg/kg of apigenin was recognized as the dose suitable for minimizing the undesirable adverse effects in the STZ-mediated depression model proposed in this study. Our data suggested that apigenin could be able to adjust behavioral dysfunction, biochemical biomarkers and recovered cellular antioxidant level in depressed animals. The surprising results were achieved by raise in COQ10 level, which could regulate the overexpression of the AMPK gene in stressful conditions. The regulatory effect of apigenin in inflammatory signaling pathways such as Nlrp3, and Tlr4 gene expression was studied at the surface part of the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

ATP:

Adenosine triphosphate

BDNF:

Brain-derived neurotrophic factor

CoQ10 :

Coenzyme Q10

DTNB:

5,5′-Dithiobis (2-nitrobenzoic acid)

FRAP:

Ferric ion reducing antioxidant power

FST:

Forced swimming test

GSH:

Glutathione

HPLC:

High performance liquid chromatography

IL-1β:

Interleukin-1β

icv:

Intracerebroventricular

LPO:

Lipid peroxidation

MPT:

Mitochondrial permeability transition

MDA:

Malondialdehyde

NGF:

Nerve growth factor

NT-3:

Neurotrophin-3

Nrf-2:

Nuclear respiratory factors

OFT:

Open field test

HPA:

Pituitary and adrenal axis

TNF-α:

Tumor necrosis factor

Tlr4:

Toll-like receptor 4

ROS:

Reactive oxygen species

SSRIs:

Selective serotonin reuptake inhibitors

STZ:

Streptozotocin

Sirt 1:

Sirtuin 1

References

  1. Gardner A, Boles RG (2011) Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 35:730–743

    CAS  PubMed  Google Scholar 

  2. Duman RS (2004) Role of neurotrophic factors in the etiology and treatment of mood disorders. NeuroMol Med 5:11–25

    CAS  Google Scholar 

  3. Heninger G, Delgado P, Charney D (1996) The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 29:2–11

    CAS  PubMed  Google Scholar 

  4. Castrén E, Võikar V, Rantamäki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18–21

    PubMed  Google Scholar 

  5. Bhagwagar Z, Hafizi S, Cowen PJ (2005) Increased salivary cortisol after waking in depression. Psychopharmacology 182:54–57

    CAS  PubMed  Google Scholar 

  6. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53

    CAS  PubMed  Google Scholar 

  7. Sonei N, Amiri S, Jafarian I, Anoush M, Rahimi-Balaei M, Bergen H, Haj-Mirzaian A, Hosseini M-J (2017) Mitochondrial dysfunction bridges negative affective disorders and cardiomyopathy in socially isolated rats: pros and cons of fluoxetine. World J Biol Psychiatry 18:39–53

    PubMed  Google Scholar 

  8. Amiri S, Yousefi-Ahmadipour A, Hosseini M-J, Haj-Mirzaian A, Momeny M, Hosseini-Chegeni H, Mokhtari T, Kharrazi S, Hassanzadeh G, Amini SM (2018) Maternal exposure to silver nanoparticles are associated with behavioral abnormalities in adulthood: role of mitochondria and innate immunity in developmental toxicity. Neurotoxicology 66:66–77

    CAS  PubMed  Google Scholar 

  9. Nahon E, Israelson A, Abu-Hamad S, Shoshan-Barmatz V (2005) Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death. FEBS Lett 579:5105–5110

    CAS  PubMed  Google Scholar 

  10. Souza LC, Carlos Filho B, Fabbro LD, de Gomes MG, Goes AT, Jesse CR (2013) Depressive-like behaviour induced by an intracerebroventricular injection of streptozotocin in mice: the protective effect of fluoxetine, antitumour necrosis factor-α and thalidomide therapies. Behav Pharmacol 24:79–86

    CAS  PubMed  Google Scholar 

  11. Souza LC, Jesse CR, de Gomes MG, Viana CE, Mattos E, Silva NC, Boeira SP (2017) Intracerebroventricular administration of streptozotocin as an experimental approach to depression: evidence for the involvement of proinflammatory cytokines and indoleamine-2, 3-dioxygenase. Neurotox Res 31:464–477

    CAS  PubMed  Google Scholar 

  12. Amiri S, Haj-Mirzaian A, Momeny M, Amini-Khoei H, Rahimi-Balaei M, Poursaman S, Rastegar M, Nikoui V, Mokhtari T, Ghazi-Khansari M (2017) Streptozotocin induced oxidative stress, innate immune system responses and behavioral abnormalities in male mice. Neuroscience 340:373–383

    CAS  PubMed  Google Scholar 

  13. Mozafari H, Amiri S, Mehr SE, Momeny M, Amini-Khoei H, Bijani S, Hosseini M-J (2020) Minocycline attenuates depressive-like behaviors in mice treated with the low dose of intracerebroventricular streptozotocin; the role of mitochondrial function and neuroinflammation. Mol Biol Rep 47:6143–6153

    CAS  PubMed  Google Scholar 

  14. Sharafi A, Kheiri-Manjili H, Bijani S, Ahmadnia A, Danafar H (2016) Simple and sensitive high performance liquid chromatographic (HPLC) method for the determination of the apigenin from dried powder of cosmos bipinnatus, apium graveolens and petroselinum crispum. Iran J Pharm Sci 12:21–32

    Google Scholar 

  15. Lee W, Woo E-R, Lee DG (2019) Effect of apigenin isolated from Aster yomena against Candida albicans: apigenin-triggered apoptotic pathway regulated by mitochondrial calcium signaling. J Ethnopharmacol 231:19–28

    CAS  PubMed  Google Scholar 

  16. Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M, Sharifi-Rad J (2020) Apigenin as an anticancer agent. Phytother Res 34:1812–1828

    CAS  PubMed  Google Scholar 

  17. Psotová J, Chlopčíková Š, Miketová P, Hrbáč J, Šimánek V (2004) Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Part III. Apigenin, baicalelin, kaempherol, luteolin and quercetin. Phytother Res 18:516–521

    PubMed  Google Scholar 

  18. Amiri M, Nourian A, Khoshkam M, Ramazani A (2018) Apigenin inhibits growth of the Plasmodium berghei and disrupts some metabolic pathways in mice. Phytother Res 32:1795–1802

    CAS  PubMed  Google Scholar 

  19. Coelho PL, Amparo JA, da Silva AB, da Silva KC, Braga-de-Souza S, Barbosa PR, Lopes GPdF, Costa SL (2019) Apigenin from Croton betulaster Müll restores the immune profile of microglia against glioma cells. Phytother Res 33:3191–3202

    CAS  PubMed  Google Scholar 

  20. Balez R, Steiner N, Engel M, Muñoz SS, Lum JS, Wu Y, Wang D, Vallotton P, Sachdev P, O’Connor M (2016) Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci Rep 6:31450

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, Lucarini M, Santini A, Souto EB, Novellino E (2019) The therapeutic potential of apigenin. Int J Mol Sci 20:1305

    CAS  PubMed Central  Google Scholar 

  22. Li R, Zhao D, Qu R, Fu Q, Ma S (2015) The effects of apigenin on lipopolysaccharide-induced depressive-like behavior in mice. Neurosci Lett 594:17–22

    CAS  PubMed  Google Scholar 

  23. Weng L, Guo X, Li Y, Yang X, Han Y (2016) Apigenin reverses depression-like behavior induced by chronic corticosterone treatment in mice. Eur J Pharmacol 774:50–54

    CAS  PubMed  Google Scholar 

  24. Haley T, McCormick W (1957) Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother 12:12–15

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pathak L, Agrawal Y, Dhir A (2013) Natural polyphenols in the management of major depression. Expert Opin Investig Drugs 22:863–880

    CAS  PubMed  Google Scholar 

  26. Guan L-P, Liu B-Y (2016) Antidepressant-like effects and mechanisms of flavonoids and related analogues. Eur J Med Chem 121:47–57

    CAS  PubMed  Google Scholar 

  27. Andalib S, Mashhadi-Mousapour M, Bijani S, Hosseini M-J (2019) Coenzyme Q 10 alleviated behavioral dysfunction and bioenergetic function in an animal model of depression. Neurochem Res 44:1182–1191

    CAS  PubMed  Google Scholar 

  28. Petit-Demouliere B, Chenu F, Bourin M (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 177:245–255

    CAS  PubMed  Google Scholar 

  29. Haj-Mirzaian A, Amiri S, Amini-Khoei H, Hosseini M-J, Haj-Mirzaian A, Momeny M, Rahimi-Balaei M, Dehpour AR (2017) Anxiety-and depressive-like behaviors are associated with altered hippocampal energy and inflammatory status in a mouse model of Crohn’s disease. Neuroscience 366:124–137

    CAS  PubMed  Google Scholar 

  30. Benzie IF, Szeto Y (1999) Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem 47:633–636

    CAS  PubMed  Google Scholar 

  31. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2009) Lower plasma coenzyme Q 10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness. Neuroendocrinol Lett 30:462–469

    CAS  PubMed  Google Scholar 

  32. Ershadi ASB, Hosseini M-J (2021) Coenzyme Q10 and depression. In: Martin C, Hunter L-A, Patel V, Preedy V, Rajendram R (eds) The neuroscience of depression. Elsevier, Amsterdam, pp 505–513

    Google Scholar 

  33. Ramnanan CJ, McMullen DC, Groom AG, Storey KB (2010) The regulation of AMPK signaling in a natural state of profound metabolic rate depression. Mol Cell Biochem 335:91–105

    CAS  PubMed  Google Scholar 

  34. Lam RW, Filteau M-J, Milev R (2011) Clinical effectiveness: the importance of psychosocial functioning outcomes. J Affect Disord 132:S9–S13

    PubMed  Google Scholar 

  35. Rosenfeld JP (1994) Method and system for treatment of depression with biofeedback using left-right brain wave asymmetry. Google Patent 5,280,793

  36. Ferrari F, Villa R (2017) The neurobiology of depression: an integrated overview from biological theories to clinical evidence. Mol Neurobiol 54:4847–4865

    CAS  PubMed  Google Scholar 

  37. Moore P, Ginwala R, Revuri N, Kranz VA, Houle JD, Khan ZK, Jain P (2017) Nutraceutical apigenin: mechanism of action associated with its anti-inflammatory activity and regulation of dendritic cell metabolism. J Immnol 198:219

    Google Scholar 

  38. Anusha C, Sumathi T, Joseph LD (2017) Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem Biol Interact 269:67–79

    CAS  PubMed  Google Scholar 

  39. Chen P, Huo X, Liu W, Li K, Sun Z, Tian J (2020) Apigenin exhibits anti-inflammatory effects in LPS-stimulated BV2 microglia through activating GSK3β/Nrf2 signaling pathway. Immunopharmacol Immunotoxicol 42:9–16

    CAS  PubMed  Google Scholar 

  40. Nakazawa T, Yasuda T, Ueda J, Ohsawa K (2003) Antidepressant-like effects of apigenin and 2, 4, 5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test. Biol Pharm Bull 26:474–480

    CAS  PubMed  Google Scholar 

  41. Kalivarathan J, Chandrasekaran SP, Kalaivanan K, Ramachandran V, Venkatraman AC (2017) Apigenin attenuates hippocampal oxidative events, inflammation and pathological alterations in rats fed high fat, fructose diet. Biomed Pharmacother 89:323–331

    CAS  PubMed  Google Scholar 

  42. Singh JPV, Selvendiran K, Banu SM, Padmavathi R, Sakthisekaran D (2004) Protective role of apigenin on the status of lipid peroxidation and antioxidant defense against hepatocarcinogenesis in Wistar albino rats. Phytomedicine 11:309–314

    CAS  PubMed  Google Scholar 

  43. Wang N, Yi WJ, Tan L, Zhang JH, Xu J, Chen Y, Qin M, Yu S, Guan J, Zhang R (2017) Apigenin attenuates streptozotocin-induced pancreatic β cell damage by its protective effects on cellular antioxidant defense. In Vitro Cell Dev Biol Anim 53:554–563

    CAS  PubMed  Google Scholar 

  44. Venigalla M, Gyengesi E, Münch G (2015) Curcumin and apigenin–novel and promising therapeutics against chronic neuroinflammation in Alzheimer’s disease. Neural Regen Res 10:1181

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Huo J, Xu Z, Hosoe K, Kubo H, Miyahara H, Dai J, Mori M, Sawashita J, Higuchi K (2018) Coenzyme Q10 prevents senescence and dysfunction caused by oxidative stress in vascular endothelial cells. Oxid Med Cell Longev. https://doi.org/10.1155/2018/3181759

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M (2011) In animal models, psychosocial stress-induced (neuro) inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35:744–759

    CAS  PubMed  Google Scholar 

  47. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA (2009) Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791

    CAS  PubMed  Google Scholar 

  48. Spagnuolo C, Moccia S, Russo GL (2018) Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem 153:105–115

    CAS  PubMed  Google Scholar 

  49. Gárate I, García-Bueno B, Madrigal JL, Bravo L, Berrocoso E, Caso JR, Micó JA, Leza JC (2011) Origin and consequences of brain Toll-like receptor 4 pathway stimulation in an experimental model of depression. J Neuroinflammation 8:1–14

    Google Scholar 

  50. Zhang X, Bu H, Jiang Y, Sun G, Jiang R, Huang X, Duan H, Huang Z, Wu Q (2019) The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol Med Rep 20:2867–2874

    CAS  PubMed  Google Scholar 

  51. Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11:230–241

    CAS  PubMed  Google Scholar 

  52. Su Q, Peng M, Zhang Y, Xu W, Darko KO, Tao T, Huang Y, Tao X, Yang X (2016) Quercetin induces bladder cancer cells apoptosis by activation of AMPK signaling pathway. Am J Cancer Res 6:498

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the deputy of research of Zanjan University of Medical Sciences (Grant No. A-12-769-27 & 29).

Author information

Authors and Affiliations

Authors

Contributions

MJH & AS conceived and designed the experiments and the study protocol; SB performed the experiments; MJH: analyzed the data; MJH & SB interpreted the data; MJH, AS & SB wrote the paper, MJH & AS & SB conducted the critical review of the manuscript.

Corresponding authors

Correspondence to Ali Sharafi or Mir-Jamal Hosseini.

Ethics declarations

Conflict of interest

The authors declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical Approval

All of animal work were in accordance with the National Institute of Health (NIH) Guidelines for the Care and Use of Laboratory Animals (HHS publication 85–23, 1985), legislation for the protection of animals used for scientific purposes (Directive 2010/63/EU) and our institutional guidelines for animal care and use (Department of Pharmacology, School of Pharmacology, Zanjan University of Medical Sciences, Zanjan, Iran).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bijani, S., Dizaji, R., Sharafi, A. et al. Neuroprotective Effect of Apigenin on Depressive-Like Behavior: Mechanistic Approach. Neurochem Res 47, 644–655 (2022). https://doi.org/10.1007/s11064-021-03473-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03473-0

Keywords

Navigation