Skip to main content
Log in

Young Plasma Induces Antidepressant-Like Effects in Aged Rats Subjected to Chronic Mild Stress by Suppressing Indoleamine 2,3-Dioxygenase Enzyme and Kynurenine Pathway in the Prefrontal Cortex

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Pathophysiology of depression in elderlies is linked to aging-associated increase in indoleamine 2,3-dioxygenase (IDO) levels and activity and kynurenine (Kyn) metabolites. Moreover, these aging-induced changes may alter the brain’s responses to stress. Growing evidence suggested that young plasma can positively affect brain dysfunctions in old age. The present study aimed to investigate whether the antidepressant effects of young plasma administration in aged rats subjected to chronic unpredictable mild stress (CUMS) and underlying mechanisms, focusing on the prefrontal cortex (PFC). Young (3 months old) and aged (22 months old) male rats were divided into five groups; young control, aged control, aged rats subjected to CUMS (A + CUMS), aged rats subjected to CUMS and treated with young plasma (A + CUMS + YP), and aged rats subjected to CUMS and treated with old plasma (A + CUMS + OP). Plasma was injected (1 ml, intravenously) three times per week for four weeks. Young plasma significantly improved CUMS-induced depressive-like behaviors, evidenced by the increased sucrose consumption ratio in the sucrose preference test and the reduced immobility time in the forced swimming test. Furthermore, young plasma markedly reduced the levels of interferon-gamma (IFN-γ), IDO, Kyn, and Kyn to tryptophan (Kyn/Trp) ratio in PFC tissue. Expression levels of the serotonin transporter and growth-associated protein (GAP)-43 were also significantly increased after chronic administration of young plasma. These findings provide evidence for the antidepressant effect of young plasma in old age; however, whether it improves depressive behaviors or faster recovery from stress-induced deficits is required to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grady C (2012) The cognitive neuroscience of ageing. Nat Rev Neurosci 13:491–505. https://doi.org/10.1038/nrn3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mattson MP, Arumugam TV (2018) Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab 27:1176–1199. https://doi.org/10.1016/j.cmet.2018.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Costa IC, Carvalho HN, Fernandes L (2013) Aging, circadian rhythms and depressive disorders: a review. Am J Neurodegener Dis 2:228–246

    Google Scholar 

  4. Birrer RB, Vemuri SP (2004) Depression in later life: a diagnostic and therapeutic challenge. Am Fam Physician 15:2375–2382

    Google Scholar 

  5. Gareri P, De Fazio P, De Sarro G (2002) Neuropharmacology of depression in aging and age-related diseases. Ageing Res Rev 1:113–134. https://doi.org/10.1016/S0047-6374(01)00370-0

    Article  CAS  PubMed  Google Scholar 

  6. Lavretsky H (2016) Intervention research in late-life depression: challenges and opportunities. Am J Geriatr Psychiatry 24:6–10. https://doi.org/10.1016/j.jagp.2015.10.011

    Article  PubMed  Google Scholar 

  7. Khundakar A, Morris C, Oakley A et al (2009) Morphometry analysis of neuronal and glial cell pathology in the dorsolateral prefrontal cortex in late-life depression. Br J Psychiatry 195:163–169. https://doi.org/10.1192/bjp.bp.108.052688

    Article  PubMed  Google Scholar 

  8. Esiri MM (2007) Ageing and the brain. J Pathol 211:181–187. https://doi.org/10.1002/path.2089

    Article  CAS  PubMed  Google Scholar 

  9. Oxenkrug GF (2010) Tryptophan-kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci 47:56–63. https://doi.org/10.3410/f.13356987.14726252

    Article  PubMed  PubMed Central  Google Scholar 

  10. Amori L, Guidetti P, Pellicciari R et al (2009) On the relationship between the two branches of the kynurenine pathway in the rat brain in vivo. J Neurochem 109:316–325. https://doi.org/10.1111/j.1471-4159.2009.05893.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10. https://doi.org/10.1124/jpet.102.034439

    Article  CAS  PubMed  Google Scholar 

  12. Ladomersky E, Scholtens DM, Kocherginsky M et al (2019) The coincidence between increasing age, immunosuppression, and the incidence of patients with glioblastoma. Front Pharmacol 10:200. https://doi.org/10.3389/fphar.2019.00200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schröcksnadel K, Wirleitner B, Winkler C, Fuchs D (2006) Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 364:82–90. https://doi.org/10.1016/j.cca.2005.06.013

    Article  CAS  PubMed  Google Scholar 

  14. Chung HY, Cesari M, Anton S et al (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8:18–30. https://doi.org/10.1016/j.arr.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  15. Oxenkrug G (2011) Interferon-gamma—inducible inflammation: contribution to aging and aging-associated psychiatric disorders. Aging Dis 2:474–486

    PubMed  PubMed Central  Google Scholar 

  16. Wu Y, Zhong X, Mai N et al (2018) Kynurenine pathway changes in late-life depression. J Affect Disord 235:76–81. https://doi.org/10.1016/j.jad.2018.04.007

    Article  CAS  PubMed  Google Scholar 

  17. Oxenkrug G (2013) Serotonin–kynurenine hypothesis of depression: historical overview and recent developments. Curr Drug Targets 14:514–521. https://doi.org/10.2174/1389450111314050002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meier TB, Drevets WC, Wurfel BE et al (2016) Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun 53:39–48. https://doi.org/10.1016/j.bbi.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  19. Meltzer CC, Smith G, Dekosky ST et al (1998) Serotonin in aging, late-life depression, and Alzheimer’s disease: the emerging role of functional imaging. Neuropsychopharmacology 18:407–430. https://doi.org/10.1016/S0893-133X(97)00194-2

    Article  CAS  PubMed  Google Scholar 

  20. Míguez JM, Aldegunde M, Paz-Valiñas L et al (1999) Selective changes in the contents of noradrenaline, dopamine and serotonin in rat brain areas during aging. J Neural Transm 106:1089–1098. https://doi.org/10.1007/s007020050225

    Article  PubMed  Google Scholar 

  21. Moll GH, Mehnert C, Wicker M et al (2000) Age-associated changes in the densities of presynaptic monoamine transporters in different regions of the rat brain from early juvenile life to late adulthood. Dev Brain Res 119:251–257. https://doi.org/10.1016/S0165-3806(99)00182-0

    Article  CAS  Google Scholar 

  22. Tsukada H, Kakiuchi T, Nishiyama S et al (2001) Effects of aging on 5-HT1A receptors and their functional response to 5-HT1A agonist in the living brain: PET study with [carbonyl-11C]WAY-100635 in conscious monkeys. Synapse 42:242–251. https://doi.org/10.1002/syn.10011

    Article  CAS  PubMed  Google Scholar 

  23. Bouchard J, Villeda SA (2015) Aging and brain rejuvenation as systemic events. J Neurochem 132:5–19. https://doi.org/10.1111/jnc.12969

    Article  CAS  PubMed  Google Scholar 

  24. Shytikov D, Balva O, Debonneuil E et al (2014) Aged mice repeatedly injected with plasma from young mice: a survival study. Biores Open Access 3:226–232. https://doi.org/10.1089/biores.2014.0043

    Article  PubMed  PubMed Central  Google Scholar 

  25. Villeda SA, Plambeck KE, Middeldorp J et al (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20:659–663. https://doi.org/10.1038/nm.3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Katsimpardi L, Litterman NK, Schein PA et al (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344:630–634. https://doi.org/10.1126/science.1251141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Biagini G, Pich EM, Carani C et al (1993) Indole-pyruvic acid, a tryptophan ketoanalogue, antagonizes the endocrine but not the behavioral effects of repeated stress in a model of depression. Biol Psychiatry 33:712–719. https://doi.org/10.1016/0006-3223(93)90121-S

    Article  CAS  PubMed  Google Scholar 

  28. Forbes NF, Stewart CA, Matthews K, Reid IC (1996) Chronic mild stress and sucrose consumption: validity as a model of depression. Physiol Behav 60:1481–1484. https://doi.org/10.1016/S0031-9384(96)00305-8

    Article  CAS  PubMed  Google Scholar 

  29. Liu A, Guo E, Yang J et al (2018) Young plasma reverses age-dependent alterations in hepatic function through the restoration of autophagy. Aging Cell. https://doi.org/10.1111/acel.12708

    Article  PubMed  PubMed Central  Google Scholar 

  30. Akimoto H, Oshima S, Sugiyama T et al (2019) Changes in brain metabolites related to stress resilience: metabolomic analysis of the hippocampus in a rat model of depression. Behav Brain Res 359:342–352. https://doi.org/10.1016/j.bbr.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  31. Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391. https://doi.org/10.1016/0014-2999(78)90118-8

    Article  CAS  PubMed  Google Scholar 

  32. Spijker S (2011) Dissection of rodent brain regions. Neuromethods. Springer, Totowa, pp 13–26

    Google Scholar 

  33. Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates: hard cover edition. Elsevier, Amsterdam

    Google Scholar 

  34. Vetreno RP, Yaxley R, Paniagua B et al (2017) Adult rat cortical thickness changes across age and following adolescent intermittent ethanol treatment. Addict Biol 22:712–723. https://doi.org/10.1111/adb.12364

    Article  CAS  PubMed  Google Scholar 

  35. Yamaguchi N, Nakajima N, Okada S, Yuri K (2016) Effects of aging on stress-related responses of serotonergic neurons in the dorsal raphe nucleus of male rats. Neurobiol Stress 3:43–51. https://doi.org/10.1016/j.ynstr.2016.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bachis A, Cruz MI, Nosheny RL, Mocchetti I (2008) Chronic unpredictable stress promotes neuronal apoptosis in the cerebral cortex. Neurosci Lett 442:104–108. https://doi.org/10.1016/j.neulet.2008.06.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Herrera-Pérez JJ, Martínez-Mota L, Fernández-Guasti A (2008) Aging increases the susceptibility to develop anhedonia in male rats. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1798–1803. https://doi.org/10.1016/j.pnpbp.2008.07.020

    Article  Google Scholar 

  38. Leonard BE (2007) Inflammation, depression and dementia: are they connected? Neurochem Res 32:1749–1756. https://doi.org/10.1007/s11064-007-9385-y

    Article  CAS  PubMed  Google Scholar 

  39. Campos AC, Vaz GN, Saito VM, Teixeira AL (2014) Further evidence for the role of interferon-gamma on anxiety- and depressive-like behaviors: involvement of hippocampal neurogenesis and NGF production. Neurosci Lett 578:100–105. https://doi.org/10.1016/j.neulet.2014.06.039

    Article  CAS  PubMed  Google Scholar 

  40. Inserra A, Mastronardi CA, Rogers G et al (2019) Neuroimmunomodulation in major depressive disorder: focus on caspase 1, inducible nitric oxide synthase, and interferon-gamma. Mol Neurobiol 56:4288–4305. https://doi.org/10.1007/s12035-018-1359-3

    Article  CAS  PubMed  Google Scholar 

  41. Mehdipour M, Mehdipour T, Skinner CM et al (2020) Plasma dilution improves cognition and attenuates neuroinflammation in old mice. GeroScience. https://doi.org/10.1007/s11357-020-00297-8

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ghosh AK, O’Brien M, Mau T et al (2019) Adipose tissue senescence and inflammation in aging is reversed by the young Milieu. J Gerontol Ser A Biol Sci Med Sci 74:1709–1715. https://doi.org/10.1093/gerona/gly290

    Article  CAS  Google Scholar 

  43. Liu D, Lun L, Huang Q et al (2018) Youthful systemic milieu alleviates renal ischemia-reperfusion injury in elderly mice. Kidney Int 94:268–279. https://doi.org/10.1016/j.kint.2018.03.019

    Article  PubMed  Google Scholar 

  44. Mohr DC, Goodkin DE, Islar J et al (2001) Treatment of depression is associated with suppression of nonspecific and antigen-specific TH1 responses in multiple sclerosis. Arch Neurol 58:1081–1086. https://doi.org/10.1001/archneur.58.7.1081

    Article  CAS  PubMed  Google Scholar 

  45. Godbout JP, Moreau M, Lestage J et al (2008) Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system. Neuropsychopharmacology 33:2341–2351. https://doi.org/10.1038/sj.npp.1301649

    Article  CAS  PubMed  Google Scholar 

  46. Oxenkrug GF (2011) Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. J Neural Transm 118:75–85. https://doi.org/10.1007/s00702-010-0475-7

    Article  CAS  PubMed  Google Scholar 

  47. Stone TW, Darlington LG (2013) The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Br J Pharmacol 169:1211–1227. https://doi.org/10.1111/bph.12230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hughes MM, Carballedo A, McLoughlin DM et al (2012) Tryptophan depletion in depressed patients occurs independent of kynurenine pathway activation. Brain Behav Immun 26:979–987. https://doi.org/10.1016/j.bbi.2012.05.010

    Article  CAS  PubMed  Google Scholar 

  49. Yoshimoto K, Kato B, Ueda S et al (2001) Dopamine and serotonin uptake inhibitors on the release of dopamine and serotonin in the nucleus accumbens of young and aged rats. Mech Ageing Dev 122:1707–1721. https://doi.org/10.1016/S0047-6374(01)00292-5

    Article  CAS  PubMed  Google Scholar 

  50. Herrera-Pérez JJ, Martínez-Mota L, Fernández-Guasti A (2010) Aging impairs the antidepressant-like response to citalopram in male rats. Eur J Pharmacol 633:39–43. https://doi.org/10.1016/j.ejphar.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  51. Couch Y, Anthony DC, Dolgov O et al (2013) Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain Behav Immun 29:136–146. https://doi.org/10.1016/j.bbi.2012.12.017

    Article  CAS  PubMed  Google Scholar 

  52. Slotkin TA, Miller DB, Fumagalli F et al (1999) Modeling geriatric depression in animals: Biochemical and behavioral effects of olfactory bulbectomy in young versus aged rats. J Pharmacol Exp Ther 289:334–345

    CAS  PubMed  Google Scholar 

  53. Slotkin TA, Cousins MM, Tate CA, Seidler FJ (2005) Serotonergic cell signaling in an animal model of aging and depression: olfactory bulbectomy elicits different adaptations in brain regions of young adult vs aging. Neuropsychopharmacology 30:52–57. https://doi.org/10.1038/sj.npp.1300569

    Article  PubMed  Google Scholar 

  54. Denny J (2006) Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43. Curr Neuropharmacol 4:293–304. https://doi.org/10.2174/157015906778520782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20:84–91. https://doi.org/10.1016/S0166-2236(96)10072-2

    Article  CAS  PubMed  Google Scholar 

  56. Hrdina P, Faludi G, Li Q et al (1998) Growth-associated protein (GAP-43), its mRNA, and protein kinase C (PKC) isoenzymes in brain regions of depressed suicides. Mol Psychiatry 3:411–418. https://doi.org/10.1038/sj.mp.4000435

    Article  CAS  PubMed  Google Scholar 

  57. Donovan SL, Mamounas LA, Andrews AM et al (2002) GAP-43 is critical for normal development of the serotonergic innervation in forebrain. J Neurosci 22:3543–3552. https://doi.org/10.1523/jneurosci.22-09-03543.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Coleman PD, Rogers KE, Flood DG (1990) Neuronal plasticity in normal aging and deficient plasticity in Alzheimer’s disease: a proposed intercellular signal cascade. Progress in brain research. Elsevier, Amsterdam, pp 75–87

    Google Scholar 

  59. Mohan A, Thalamuthu A, Mather KA et al (2018) Differential expression of synaptic and interneuron genes in the aging human prefrontal cortex. Neurobiol Aging 70:194–202. https://doi.org/10.1016/j.neurobiolaging.2018.06.011

    Article  CAS  PubMed  Google Scholar 

  60. Storsve AB, Fjell AM, Tamnes CK et al (2014) Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J Neurosci 34:8488–8498. https://doi.org/10.1523/JNEUROSCI.0391-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kassem MS, Lagopoulos J, Stait-Gardner T et al (2013) Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses. Mol Neurobiol 47:645–661. https://doi.org/10.1007/s12035-012-8365-7

    Article  CAS  PubMed  Google Scholar 

  62. Rebo J, Mehdipour M, Gathwala R et al (2016) A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun 7:13363. https://doi.org/10.1038/ncomms13363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Castellano JM, Kirby ED, Wyss-Coray T (2015) Blood-borne revitalization of the aged brain. JAMA Neurol 72:1191–1194. https://doi.org/10.1001/jamaneurol.2015.1616

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang W, Wang L, Ruan L et al (2018) Extracellular vesicles extracted from young donor serum attenuate inflammaging via partially rejuvenating aged T-cell immunotolerance. FASEB J 32:5899–5912. https://doi.org/10.1096/fj.201800059R

    Article  CAS  PubMed Central  Google Scholar 

  65. Schafer MJ, LeBrasseur NK (2019) The influence of GDF11 on brain fate and function. Geroscience 41:1–11. https://doi.org/10.1007/s11357-019-00054-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Castellano JM, Mosher KI, Abbey RJ et al (2017) Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544:488–492. https://doi.org/10.1038/nature22067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baker LD, Barsness SM, Borson S et al (2012) Effects of growth hormone-releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: results of a controlled trial. Arch Neurol 69:1420–1429. https://doi.org/10.1001/archneurol.2012.1970

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gan K, Südhof T (2019) Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. Proc Natl Acad Sci 116:201902672. https://doi.org/10.1073/pnas.1902672116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant from the Aging Research Institute of Tabriz University of Medical Sciences. Our data were derived from the thesis of Arshad Ghaffari-Nasab for a Ph.D. degree in physiology (Thesis No. 60281).

Funding

This study was supported by a grant from the Aging Research Institute of Tabriz University of Medical Sciences [Grant Number 60281].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Alipour.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval

All procedures and protocols were performed in accordance with the Guide for the Care and Use of Laboratory Animals of the National Institute of Health (NIH; Publication No. 85-23, revised 1985) and approved by the regional ethics committee of Tabriz University of Medical Sciences (No: IR.TBZMED.VCR.REC.1397.197).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffari-Nasab, A., Badalzadeh, R., Mohaddes, G. et al. Young Plasma Induces Antidepressant-Like Effects in Aged Rats Subjected to Chronic Mild Stress by Suppressing Indoleamine 2,3-Dioxygenase Enzyme and Kynurenine Pathway in the Prefrontal Cortex. Neurochem Res 47, 358–371 (2022). https://doi.org/10.1007/s11064-021-03440-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03440-9

Keywords

Navigation