Skip to main content
Log in

The Effects of the Olig Family on the Regulation of Spinal Cord Development and Regeneration

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurons and glial cells in the central nervous system (CNS) are generated from neuroepithelial cells in the ventricular zone that surrounds the embryonic neural tube. The proliferation and distinct differentiation of neural precursors occurs at certain stages and are regulated by a series of transcription factors leading to the generation of neuronal and glial cell subtypes. In this manuscript, we review the effects of the Olig family, namely, members Olig1, Olig2 and Olig3, on the distinct differentiation of glial and neuronal cells in the developing spinal cord and injured neural tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ravanelli AM, Kearns CA, Powers RK et al (2018) Sequential specification of oligodendrocyte lineage cells by distinct levels of hedgehog and Notch signaling. Dev Biol 444:93–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Takebayashi H, Yoshida S, Sugimori M et al (2000) Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member Olig3. Mech Dev 99:143–148

    Article  PubMed  CAS  Google Scholar 

  3. Lu QR, Yuk D, Alberta JA et al (2000) Sonic hedge-hog–regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329

    Article  PubMed  CAS  Google Scholar 

  4. Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage-specific basic he-lix-loop-helix transcription factors. Neuron 25:331–343

    Article  PubMed  CAS  Google Scholar 

  5. Li N, Leung GK (2015) Oligodendrocyte precursor cells in spinal cord injury: a review and update. Biomed Research Internatiuonal 10:1–20

    Google Scholar 

  6. Zhou Q, Anderson DJ (2002) The bHLH transcription factors Olig2 and Olig1 couple neuronal and glial subtype specification. Cell 109:61–73

    Article  PubMed  CAS  Google Scholar 

  7. Sun T, Hafler BP, Kaing S et al (2006) Evidence for motoneuron lineage-specific regulation of Olig2 in the vertebrate neural tube. Dev Biol 292:152–164

    Article  PubMed  CAS  Google Scholar 

  8. Qi Q, Zhang Y, Shen L et al (2016) Olig1 expression pattern in neural cells during rat spinal cord development. Neuropsychiatr Dis Treat 12:909–916

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Paes de Faria J, Kessaris N, Andrew P et al (2014) New Olig1 null mice confirm a non-essential role for Olig1 in oligodendrocyte development. BMC Neurosci 15:1471–2202

    Article  Google Scholar 

  10. Rowitch DH (2004) Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5:409–419

    Article  PubMed  CAS  Google Scholar 

  11. Wegener A, Deboux C, Bachelin C et al (2015) Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination. Brain 138:120–135

    Article  PubMed  Google Scholar 

  12. Xin M, Yue T, Ma Z et al (2005) Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci 25:1354–1365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Dai J, Bercury KK, Ahrendsen JT et al (2015) Olig1 function is required for oligodendrocyte differentiation in the mouse brain. J Neurosci 35:4386–4402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Othman A, Frim DM, Polak P et al (2011) Olig1 is expressed in human oligodendrocytes during maturation and regeneration. Glia 59:914–926

    Article  PubMed  Google Scholar 

  15. Schebesta M, Serluca FC (2009) Olig1 expression identifies oligodendrocytes in zebrafish and requires hedgehog and notch signaling. Dev Dyn 238:887–898

    Article  PubMed  CAS  Google Scholar 

  16. Dessaud E, McMahon AP, Briscoe J (2008) Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135:2489–2503

    Article  PubMed  CAS  Google Scholar 

  17. Oustah A, Danesin C, Khouri-Farah N et al (2014) Dynamics of Sonic hedgehog signaling in the ventral spinal cord are controlled by intrinsic changes in source cells requiring Sulfatase 1. Development 141:1392–1403

    Article  PubMed  CAS  Google Scholar 

  18. Li H, Lu Y, Smith HK et al (2007) Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J Neurosci 27:14375–14382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yu Y, Chen Y, Kim B et al (2013) Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation. Cell 152:248–261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Miriam W, Franziska F, Olga E et al (2020) Transcription factor Tcf4 is the preferred heterodimerization partner for Olig2 in oligodendrocytes and required for differentiation. Nucleic Acids Res 48:4839–4857

    Article  CAS  Google Scholar 

  21. Qi Y, Cai J, Wu Y et al (2001) Control of oligodendrocyte differ-entiation by the Nkx2.2 homeodomain transcription factor. Development 128:2723–2733

    Article  PubMed  CAS  Google Scholar 

  22. Cheng X, Wang Y, He Q et al (2007) Bone morphogenetic protein signaling and Olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells. Cells 25:3204–3214

    CAS  Google Scholar 

  23. Mie M, Kaneko M, Henmi F et al (2012) Induction of motor neuron differentiation by transduction of Olig2 protein. Biochem Biophys Res Commun 427:531–536

    Article  PubMed  CAS  Google Scholar 

  24. Dennis DJ, Han S, Schuurmans C (2019) bHLH transcription factors in neural development, disease, and reprogramming. Brain Res 1705:48–65

    Article  PubMed  CAS  Google Scholar 

  25. Ravanelli AM, Appel B (2015) Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment. Genes Dev 29:2504–2515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lee SK, Lee B, Ruiz EC et al (2005) Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev 19:282–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gao T, Li J, Li N et al (2020) Lncrps25 play an essential role in motor neuron development through controlling the expression of olig2 in zebrafish. J Cell Physiol 235:3485–3496

    Article  PubMed  CAS  Google Scholar 

  28. Li H, de Faria JP, Andrew P et al (2011) Phosphorylation regulates Olig2 cofactor choice and the motor neuron-oligodendrocyte fate switch. Neuron 69:918–929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kupp R, Shtayer L, Shtayer L et al (2016) Lineage-restricted Olig2-RTK signaling governs the molecular subtype of glioma stem-like cells. Cell Rep 16:2838–2845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zuo H, Wood WM, Sherafat A et al (2018) Age-Dependent decline in fate switch from NG2 cells to astrocytes after Olig2 deletion. Neuroscience 38:2359–2371

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun Y, Meijer DH, Alberta JA et al (2011) Phosphorylation state of Olig2 regulates proliferation of neural progenitors. Neuron 69:906–917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Masahira N, Takebayashi H, Ono K et al (2006) Olig2-positive progenitors in the embryonic spinal cord give rise not only to motor neurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells. Dev Biol 293:358–369

    Article  PubMed  CAS  Google Scholar 

  33. Ono K, Takebayashi H, Ikeda K et al (2008) Regional-and temporal-dependent changes in the differentiation of Olig2 progenitors in the forebrain, and the impact on astrocyte development in the dorsal pallium. Dev Biol 320:456–468

    Article  PubMed  CAS  Google Scholar 

  34. Cai J, Chen Y, Cai WH et al (2007) A crucial role for Olig2 in white matter astrocyte development. Development 2007(134):1887–1899

    Article  CAS  Google Scholar 

  35. Ohayon D, Escalas N, Cochard P et al (2019) Sulfatase 2 promotes generation of a spinal cord astrocyte subtype that stands out through the expression of Olig2. Glia 67:1478–1495

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tatsumi K, Isonishi A, Yamasaki M et al (2018) Olig2-Lineage astrocytes: a distinct subtype of astrocytes that differs from GFAP astrocytes. Front Neuroanat 12:1–7

    Article  CAS  Google Scholar 

  37. Vogel JK, Weider M, Engler LA et al (2020) Sox9 overexpression exerts multiple stage-dependent effects on mouse spinal cord development. Glia 68:932–946

    Article  PubMed  Google Scholar 

  38. Wang YZ, Fan H, Ji Y et al (2020) Olig2 regulates terminal differentiation and maturation of peripheral olfactory sensory neurons. Cell Mol Life Sci 77:3597–3609

    Article  PubMed  CAS  Google Scholar 

  39. Storm R, Cholewa-Waclaw J, Reuter K et al (2009) The bHLH transcription factor Olig3 marks the dorsal neuroepithelium of the hindbrain and is essential for the development of brainstem nuclei. Development 136:295–305

    Article  PubMed  CAS  Google Scholar 

  40. Ding L, Takebayashi H, Watanabe K et al (2005) Short-term lineage analysis of dorsally derived Olig3 cells in the developing spinal cord. Dev Dyn 234:622–6323

    Article  PubMed  CAS  Google Scholar 

  41. Müller T, Anlag K, Wildner H et al (2005) The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord. Genes Dev 19:733–743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Arnett HA, Fancy SP, Alberta JA et al (2004) bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 306:2111–2115

    Article  PubMed  CAS  Google Scholar 

  43. Lim DA, Alvarez-Buylla A (2014) Adult neural stem cells stake their ground. Trends in Neurosci 37:563–571

    Article  CAS  Google Scholar 

  44. Lu DC, Niu T, Alaynick WA (2015) Molecular and cellular development of spinal cord locomotor circuitry. Front Mol Neurosci 8:25

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fancy SP, Zhao C, Franklin RJ (2004) Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci 27:247–254

    Article  PubMed  CAS  Google Scholar 

  46. Islam MS, Tatsumi K, Okuda H et al (2009) Olig2-expressing progenitor cells preferentially differentiate into oligodendrocytes in cuprizone induced demyelinated lesions. Neurochem Int 54:192–198

    Article  PubMed  CAS  Google Scholar 

  47. Tan BT, Jiang L, Liu L et al (2017) Local injection of Lenti-Olig2 at lesion site promotes functional recovery of spinal cord injury in rats. CNS Neurosci Ther 23:475–487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Maire CL, Wegener A, Kerninon C et al (2010) Gain-of-function of Olig transcription factors enhances oligodendrogenesis and myelination. Stem Cells 28:1611–1622

    Article  PubMed  CAS  Google Scholar 

  49. Kim HM, Wang DH, Choi JY et al (2011) Differential and cooperative actions of Olig1 and Olig2 transcription factors on immature proliferating cells after contusive spinal cord injury. Glia 59:1094–1106

    Article  PubMed  Google Scholar 

  50. Talbott JF, Loy DN, Liu Y et al (2005) Endogenous Nkx2.2+/Olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes. J Exp Neurol 192:11–24

    Article  CAS  Google Scholar 

  51. Buffo A, Vosko MR, Ertürk D et al (2005) Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci USA 102:18183–18188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Liu JA, Cheung M (2016) Neural crest stem cells and their potential therapeutic applications. Dev Biol 419:199–216

    Article  PubMed  CAS  Google Scholar 

  53. Chen JA, Huang YP, Mazzoni EO et al (2011) Mir-17-3p controls spinal neural progenitor patterning by regulating Olig2/Irx3 cross-repressive loop. Neuron 69:721–735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Bartus K, Galino J, James ND et al (2016) Neuregulin-1 controls an endogenous repair mechanism after spinal cord injury. Brain 139:1394–1416

    Article  PubMed  PubMed Central  Google Scholar 

  55. Setoguchi T, Kondo T (2004) Nuclear export of Olig2 in neural stem cells is essential for ciliary neurotrophic factor-induced astrocyte differentiation. J Cell Biol 166:963–968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhao H, Gao XY, Liu ZH et al (2019) Effects of the transcription factor Olig1 on the differentiation and remyelination of oligodendrocyte precursor cells after focal cerebral ischemia in rats. Mol Med Rep 20:4603–4611

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Bartus K, Burnside ER, Galino J et al (2019) ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury. Glia 67:1036–104

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from national natural fund of China (NSFC: grant number: 81772066). There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Liu or Ce Yang.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Long, Zy. & Yang, C. The Effects of the Olig Family on the Regulation of Spinal Cord Development and Regeneration. Neurochem Res 46, 2776–2782 (2021). https://doi.org/10.1007/s11064-021-03383-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03383-1

Keywords

Navigation