Skip to main content

Advertisement

Log in

Treatment with Histone Deacetylase Inhibitor Attenuates Peripheral Inflammation-Induced Cognitive Dysfunction and Microglial Activation: The Effect of SAHA as a Peripheral HDAC Inhibitor

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It has been demonstrated that peripheral inflammation induces cognitive dysfunction. Several histone deacetylase (HDAC) inhibitors ameliorate cognitive dysfunction in animal models of not only peripheral inflammation but also Alzheimer’s disease. However, it is not clear which HDAC expressed in the central nervous system or peripheral tissues is involved in the therapeutic effect of HDAC inhibition on cognitive dysfunction. Hence, the present study investigated the effect of peripheral HDAC inhibition on peripheral inflammation-induced cognitive dysfunction. Suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor that is mainly distributed in peripheral tissues after intraperitoneal administration, was found to prevent peripheral inflammation-induced cognitive dysfunction. Moreover, pretreatment with SAHA dramatically increased mRNA expression of interleukin-10, an anti-inflammatory cytokine, in peripheral and central tissues and attenuated peripheral inflammation-induced microglial activation in the CA3 region of the hippocampus. Minocycline, a macrophage/microglia inhibitor, also ameliorated cognitive dysfunction. Furthermore, as a result of treatment with liposomal clodronate, depletion of peripheral macrophages partially ameliorated the peripheral inflammation-evoked cognitive dysfunction. Taken together, these findings demonstrate that inhibition of peripheral HDAC plays a critical role in preventing cognitive dysfunction induced by peripheral inflammation via the regulation of anti-inflammatory cytokine production and the inhibition of microglial functions in the hippocampus. Thus, these findings could provide support for inhibition of peripheral HDAC as a novel therapeutic strategy for inflammation-induced cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477. https://doi.org/10.1038/nri3705

    Article  CAS  PubMed  Google Scholar 

  2. Hopperton KE, Mohammad D, Trépanier MO, Giuliano V, Bazinet RP (2018) Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review. Mol Psychiatry 23(2):177–198. https://doi.org/10.1038/mp.2017.246

    Article  CAS  PubMed  Google Scholar 

  3. Leng F, Edison P (2020) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. https://doi.org/10.1038/s41582-020-00435-y

    Article  PubMed  Google Scholar 

  4. Streit WJ, Khoshbouei H, Bechmann I (2020) The role of microglia in sporadic Alzheimer’s disease. J Alzheimers Dis. https://doi.org/10.3233/JAD-201248

    Article  Google Scholar 

  5. Fidalgo AR, Cibelli M, White JP, Nagy I, Maze M, Ma D (2011) Systemic inflammation enhances surgery-induced cognitive dysfunction in mice. Neurosci Lett 498(1):63–66. https://doi.org/10.1016/j.neulet.2011.04.063

    Article  CAS  PubMed  Google Scholar 

  6. Wang W, Wang Y, Wu H, Lei L, Xu S, Shen X et al (2014) Postoperative cognitive dysfunction: current developments in mechanism and prevention. Med Sci Monit 20:1908–1912. https://doi.org/10.12659/MSM.892485

    Article  PubMed  PubMed Central  Google Scholar 

  7. Calsavara AJC, Nobre V, Barichello T, Teixeira AL (2018) Post-sepsis cognitive impairment and associated risk factors: a systematic review. Aust Crit Care 31(4):242–253. https://doi.org/10.1016/j.aucc.2017.06.001

    Article  PubMed  Google Scholar 

  8. Stebbins RC, Noppert GA, Yang YC, Dowd JB, Simanek A, Aiello AE (2020) Immune response to cytomegalovirus and cognition in the health and retirement study. Am J Epidemiol. https://doi.org/10.1093/aje/kwaa238

    Article  PubMed Central  Google Scholar 

  9. in t’Veld BA, Ruitenberg A, Hofman A, Launer LJ, van Duijn CM, Stijnen T et al (2001) Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 345(21):1515–1521. https://doi.org/10.1056/NEJMoa010178

    Article  Google Scholar 

  10. Catorce MN, Gevorkian G (2016) LPS-induced murine neuroinflammation model: main features and suitability for pre-clinical assessment of nutraceuticals. Curr Neuropharmacol 14(2):155–164. https://doi.org/10.2174/1570159x14666151204122017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Savi FF, de Oliveira A, de Medeiros GF, Bozza FA, Michels M, Sharshar T et al (2020) What animal models can tell us about long-term cognitive dysfunction following sepsis: a systematic review. Neurosci Biobehav Rev. https://doi.org/10.1016/j.neubiorev.2020.12.005

    Article  PubMed  Google Scholar 

  12. Rosi S, Vazdarjanova A, Ramirez-Amaya V, Worley PF, Barnes CA, Wenk GL (2006) Memantine protects against LPS-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat. Neuroscience 142(4):1303–1315. https://doi.org/10.1016/j.neuroscience.2006.08.017

    Article  CAS  PubMed  Google Scholar 

  13. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462. https://doi.org/10.1002/glia.20467

    Article  PubMed  PubMed Central  Google Scholar 

  14. Okun E, Griffioen KJ, Mattson MP (2011) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34(5):269–281. https://doi.org/10.1016/j.tins.2011.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Noh H, Jeon J, Seo H (2014) Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem Int 69:35–40. https://doi.org/10.1016/j.neuint.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  16. Morrison DC, Leive L (1975) Fractions of lipopolysaccharide from Escherichia coli O111:B4 prepared by two extraction procedures. J Biol Chem 250(8):2911–2919

    Article  CAS  PubMed  Google Scholar 

  17. Singh AK, Jiang Y (2004) How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology 201(1–3):197–207. https://doi.org/10.1016/j.tox.2004.04.015

    Article  CAS  PubMed  Google Scholar 

  18. Banks WA, Robinson SM (2010) Minimal penetration of lipopolysaccharide across the murine blood-brain barrier. Brain Behav Immun 24(1):102–109. https://doi.org/10.1016/j.bbi.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  19. Xaio H, Banks WA, Niehoff ML, Morley JE (2001) Effect of LPS on the permeability of the blood-brain barrier to insulin. Brain Res 896(1–2):36–42. https://doi.org/10.1016/s0006-8993(00)03247-9

    Article  CAS  PubMed  Google Scholar 

  20. Banks WA, Gray AM, Erickson MA, Salameh TS, Damodarasamy M, Sheibani N et al (2015) Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflammation 12:223. https://doi.org/10.1186/s12974-015-0434-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A et al (2019) Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 10(1):5816. https://doi.org/10.1038/s41467-019-13812-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT (2009) Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 32(11):591–601. https://doi.org/10.1016/j.tins.2009.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kwok JB (2010) Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics 2(5):671–682. https://doi.org/10.2217/epi.10.43

    Article  CAS  PubMed  Google Scholar 

  24. Daniilidou M, Koutroumani M, Tsolaki M (2011) Epigenetic mechanisms in Alzheimer’s disease. Curr Med Chem 18(12):1751–1756. https://doi.org/10.2174/092986711795496872

    Article  CAS  PubMed  Google Scholar 

  25. Cantley MD, Haynes DR (2013) Epigenetic regulation of inflammation: progressing from broad acting histone deacetylase (HDAC) inhibitors to targeting specific HDACs. Inflammopharmacology 21(4):301–307. https://doi.org/10.1007/s10787-012-0166-0

    Article  CAS  PubMed  Google Scholar 

  26. Feng Y, Jankovic J, Wu YC (2015) Epigenetic mechanisms in Parkinson’s disease. J Neurol Sci 349(1–2):3–9. https://doi.org/10.1016/j.jns.2014.12.017

    Article  CAS  PubMed  Google Scholar 

  27. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA et al (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95(6):3003–3007. https://doi.org/10.1073/pnas.95.6.3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schroeder FA, Lewis MC, Fass DM, Wagner FF, Zhang YL, Hennig KM et al (2013) A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS ONE 8(8):e71323. https://doi.org/10.1371/journal.pone.0071323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hsing CH, Hung SK, Chen YC, Wei TS, Sun DP, Wang JJ et al (2015) Histone deacetylase inhibitor trichostatin A ameliorated endotoxin-induced neuroinflammation and cognitive dysfunction. Mediators Inflamm 2015:163140. https://doi.org/10.1155/2015/163140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peng L, Zhu M, Yang Y, Weng Y, Zou W, Zhu X et al (2019) Neonatal lipopolysaccharide challenge induces long-lasting spatial cognitive impairment and dysregulation of hippocampal histone acetylation in mice. Neuroscience 398:76–87. https://doi.org/10.1016/j.neuroscience.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  31. Chong W, Li Y, Liu B, Zhao T, Fukudome EY, Liu Z et al (2012) Histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates toll-like receptor 4 signaling in lipopolysaccharide-stimulated mouse macrophages. J Surg Res 178(2):851–859. https://doi.org/10.1016/j.jss.2012.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E et al (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci USA 100(4):2041–2046. https://doi.org/10.1073/pnas.0437870100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yin D, Ong JM, Hu J, Desmond JC, Kawamata N, Konda BM et al (2007) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin Cancer Res 13(3):1045–1052. https://doi.org/10.1158/1078-0432.CCR-06-1261

    Article  CAS  PubMed  Google Scholar 

  34. Hendricks JA, Keliher EJ, Marinelli B, Reiner T, Weissleder R, Mazitschek R (2011) In vivo PET imaging of histone deacetylases by 18F-suberoylanilide hydroxamic acid (18F-SAHA). J Med Chem 54(15):5576–5582. https://doi.org/10.1021/jm200620f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hanson JE, La H, Plise E, Chen YH, Ding X, Hanania T et al (2013) SAHA enhances synaptic function and plasticity in vitro but has limited brain availability in vivo and does not impact cognition. PLoS ONE 8(7):e69964. https://doi.org/10.1371/journal.pone.0069964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abu-Ghefreh AA, Masocha W (2010) Enhancement of antinociception by coadministration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naïve mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis. BMC Musculoskelet Disord 11:276. https://doi.org/10.1186/1471-2474-11-276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Irie Y, Tsubota M, Ishikura H, Sekiguchi F, Terada Y, Tsujiuchi T et al (2017) Macrophage-derived HMGB1 as a pain mediator in the early stage of acute pancreatitis in mice: targeting RAGE and CXCL12/CXCR4 axis. J Neuroimmune Pharmacol 12(4):693–707. https://doi.org/10.1007/s11481-017-9757-2

    Article  PubMed  Google Scholar 

  38. Zhang X, Yan F, Feng J, Qian H, Cheng Z, Yang Q et al (2018) Dexmedetomidine inhibits inflammatory reaction in the hippocampus of septic rats by suppressing NF-κB pathway. PLoS ONE 13(5):e0196897. https://doi.org/10.1371/journal.pone.0196897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13(2):93–110

    Article  CAS  PubMed  Google Scholar 

  40. Takuma K, Hara Y, Kataoka S, Kawanai T, Maeda Y, Watanabe R et al (2014) Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism. Pharmacol Biochem Behav 126:43–49. https://doi.org/10.1016/j.pbb.2014.08.013

    Article  CAS  PubMed  Google Scholar 

  41. Hisaoka-Nakashima K, Tomimura Y, Yoshii T, Ohata K, Takada N, Zhang FF et al (2019) High-mobility group box 1-mediated microglial activation induces anxiodepressive-like behaviors in mice with neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry 92:347–362. https://doi.org/10.1016/j.pnpbp.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  42. Iwamoto M, Nakamura Y, Takemura M, Hisaoka-Nakashima K, Morioka N (2020) TLR4-TAK1-p38 MAPK pathway and HDAC6 regulate the expression of sigma-1 receptors in rat primary cultured microglia. J Pharmacol Sci 144(1):23–29. https://doi.org/10.1016/j.jphs.2020.06.007

    Article  CAS  PubMed  Google Scholar 

  43. Nakamura Y, Izumi H, Shimizu T, Hisaoka-Nakashima K, Morioka N, Nakata Y (2013) Volume transmission of substance P in striatum induced by intraplantar formalin injection attenuates nociceptive responses via activation of the neurokinin 1 receptor. J Pharmacol Sci 121(4):257–271. https://doi.org/10.1254/jphs.12218FP

    Article  CAS  PubMed  Google Scholar 

  44. Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8(5):355–367. https://doi.org/10.1038/nrn2132

    Article  CAS  PubMed  Google Scholar 

  45. Fischer A, Sananbenesi F, Mungenast A, Tsai LH (2010) Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 31(12):605–617. https://doi.org/10.1016/j.tips.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  46. Shakespear MR, Halili MA, Irvine KM, Fairlie DP, Sweet MJ (2011) Histone deacetylases as regulators of inflammation and immunity. Trends Immunol 32(7):335–343. https://doi.org/10.1016/j.it.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  47. Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3(2):169–176. https://doi.org/10.1038/nri1004

    Article  CAS  PubMed  Google Scholar 

  48. Ogawa Y, Irukayama-Tomobe Y, Murakoshi N, Kiyama M, Ishikawa Y, Hosokawa N et al (2016) Peripherally administered orexin improves survival of mice with endotoxin shock. Elife. https://doi.org/10.7554/eLife.21055

    Article  PubMed  PubMed Central  Google Scholar 

  49. Terrando N, Rei Fidalgo A, Vizcaychipi M, Cibelli M, Ma D, Monaco C et al (2010) The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction. Crit Care 14(3):R88. https://doi.org/10.1186/cc9019

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V et al (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J Immunol 187(12):6539–6549. https://doi.org/10.4049/jimmunol.1100620

    Article  CAS  PubMed  Google Scholar 

  51. Lonnemann N, Hosseini S, Marchetti C, Skouras DB, Stefanoni D, D’Alessandro A et al (2020) The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 117(50):32145–32154. https://doi.org/10.1073/pnas.2009680117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Armstrong L, Jordan N, Millar A (1996) Interleukin 10 (IL-10) regulation of tumour necrosis factor alpha (TNF-alpha) from human alveolar macrophages and peripheral blood monocytes. Thorax 51(2):143–149. https://doi.org/10.1136/thx.51.2.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Richwine AF, Sparkman NL, Dilger RN, Buchanan JB, Johnson RW (2009) Cognitive deficits in interleukin-10-deficient mice after peripheral injection of lipopolysaccharide. Brain Behav Immun 23(6):794–802. https://doi.org/10.1016/j.bbi.2009.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun Y, Ma J, Li D, Li P, Zhou X, Li Y et al (2019) Interleukin-10 inhibits interleukin-1β production and inflammasome activation of microglia in epileptic seizures. J Neuroinflammation 16(1):66. https://doi.org/10.1186/s12974-019-1452-1

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shemer A, Scheyltjens I, Frumer GR, Kim JS, Grozovski J, Ayanaw S et al (2020) Interleukin-10 prevents pathological microglia hyperactivation following peripheral endotoxin challenge. Immunity 53(5):1033–49.e7. https://doi.org/10.1016/j.immuni.2020.09.018

    Article  CAS  PubMed  Google Scholar 

  56. Stanfield BA, Purves T, Palmer S, Sullenger B, Welty-Wolf K, Haines K et al (2021) IL-10 and class 1 histone deacetylases act synergistically and independently on the secretion of proinflammatory mediators in alveolar macrophages. PLoS ONE 16(1):e0245169. https://doi.org/10.1371/journal.pone.0245169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ (2002) Shaping gene expression in activated and resting primary macrophages by IL-10. J Immunol 169(5):2253–2263. https://doi.org/10.4049/jimmunol.169.5.2253

    Article  CAS  PubMed  Google Scholar 

  58. Staples KJ, Smallie T, Williams LM, Foey A, Burke B, Foxwell BM et al (2007) IL-10 induces IL-10 in primary human monocyte-derived macrophages via the transcription factor Stat3. J Immunol 178(8):4779–4785. https://doi.org/10.4049/jimmunol.178.8.4779

    Article  CAS  PubMed  Google Scholar 

  59. Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181. https://doi.org/10.1038/nri2711

    Article  CAS  PubMed  Google Scholar 

  60. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT et al (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15. https://doi.org/10.1186/1742-2094-5-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He H, Geng T, Chen P, Wang M, Hu J, Kang L et al (2016) NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation. Sci Rep 6:27711. https://doi.org/10.1038/srep27711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S et al (2015) Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 21(8):880–886. https://doi.org/10.1038/nm.3913

    Article  CAS  PubMed  Google Scholar 

  63. Xiong H, Zeng YC, Zheng J, Thylin M, Gendelman HE (1999) Soluble HIV-1 infected macrophage secretory products mediate blockade of long-term potentiation: a mechanism for cognitive dysfunction in HIV-1-associated dementia. J Neurovirol 5(5):519–528. https://doi.org/10.3109/13550289909045381

    Article  CAS  PubMed  Google Scholar 

  64. Degos V, Vacas S, Han Z, van Rooijen N, Gressens P, Su H et al (2013) Depletion of bone marrow-derived macrophages perturbs the innate immune response to surgery and reduces postoperative memory dysfunction. Anesthesiology 118(3):527–536. https://doi.org/10.1097/ALN.0b013e3182834d94

    Article  CAS  PubMed  Google Scholar 

  65. Zhang D, Li N, Wang Y, Lu W, Zhang Y, Chen Y et al (2019) Methane ameliorates post-operative cognitive dysfunction by inhibiting microglia NF-κB/MAPKs pathway and promoting IL-10 expression in aged mice. Int Immunopharmacol 71:52–60. https://doi.org/10.1016/j.intimp.2019.03.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Smoking Research Foundation. Experiments were carried out using equipment at the Analysis Center of Life Science, Hiroshima University and the Research Center for Molecular Medicine, Faculty of Medicine, Hiroshima University (Grant number: JPMXS0410300320). We thank Edanz Group (https://en-author-services.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoki Nakamura or Norimitsu Morioka.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takada, N., Nakamura, Y., Ikeda, K. et al. Treatment with Histone Deacetylase Inhibitor Attenuates Peripheral Inflammation-Induced Cognitive Dysfunction and Microglial Activation: The Effect of SAHA as a Peripheral HDAC Inhibitor. Neurochem Res 46, 2285–2296 (2021). https://doi.org/10.1007/s11064-021-03367-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03367-1

Keywords

Navigation