Skip to main content

Advertisement

Log in

Effects of Long-Acting Testosterone Undecanoate on Behavioral Parameters and Na + , K+-ATPase mRNA Expression in Mice with Alzheimer`s Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Previous studies have shown that testosterone attenuates stress-induced mood dysfunction and memory deterioration. However, the exact mechanism is still unknown. This study was conducted to investigate the role of long-term testosterone undecanoate on the behavioral responses in AD induced by AlCl3 + D-galactose administration and the possible alteration of the gene expression level of the Na/K ATPase pump. Adult male mice received AlCl3 in drinking water (10 mg/kg/day) and (D-gal 200 mg/kg/day), subcutaneously for 90 consecutive days, then received a single intramuscular (I.M) injection of castor oil (vehicle) on day 91, while treated groups received a single I.M injection of either low (100 mg/kg/45 days) or high dose (500 mg/kg/45 days) respectively of long-acting testosterone undecanoate on day 91. The time spent in the interaction zone during the open field test, preference index to novel objects in the novel object recognition test, spontaneous alternation percentage (SAP) in Y-maze test, and escape latency time in the Morris water maze test were used to measure the locomotor activity, long-term memory, and spatial memory in mice, respectively. The results showed that testosterone undecanoate treatment improved locomotor activity, improved preference to novel objects, improved spatial memory, and reversed anxiety and depression induced by AlCl3 + D-galactose administration in male mice, suggesting the enhancement of behavioral and memory functions brought by testosterone treatment. Moreover, testosterone undecanoate treatment did alter gene expression levels of Na/K ATPase isoforms in the brain hippocampus. In most cases, altered gene expression was significant and correlated with the observed behavioral changes. Taken together, our findings provide new insight into the effects of long-acting testosterone undecanoate administration on locomotor activity, long-term memory, anxiety, and spatial memory in male mice with Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chiroma SM, Hidayat Baharuldin MT, Mat Taib CN et al (2019) Protective effect of centella asiatica against d-galactose and aluminium chloride induced rats: behavioral and ultrastructural approaches. Biomed Pharmacother 109:853–864. https://doi.org/10.1016/j.biopha.2018.10.111

    Article  CAS  PubMed  Google Scholar 

  2. Luo Y, Niu F, Sun Z et al (2009) Altered expression of Aβ metabolism-associated molecules from d-galactose/AlCl 3 induced mouse brain. Mech Ageing Dev 130:248–252. https://doi.org/10.1016/j.mad.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  3. Yan XS, Yang ZJ, Jia JX et al (2019) Protective mechanism of testosterone on cognitive impairment in a rat model of Alzheimer’s disease. Neural Regen Res 14:649–657. https://doi.org/10.4103/1673-5374.245477

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li H, Kang T, Qi B et al (2016) Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of D-galactose/AlCl3 inducing rats model of Alzheimer’s disease. J Ethnopharmacol 179:162–169. https://doi.org/10.1016/j.jep.2015.12.020

    Article  CAS  PubMed  Google Scholar 

  5. Sun ZZ, Bin CZ, Jiang H et al (2009) Alteration of Aβ metabolism-related molecules in predementia induced by AlCl3 and d-galactose. Age (Omaha) 31:277–284. https://doi.org/10.1007/s11357-009-9099-y

    Article  CAS  Google Scholar 

  6. Gu L, Guo Z (2013) Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. J Neurochem 126:305–311. https://doi.org/10.1111/jnc.12202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wei Y, Liu D, Zheng Y et al (2017) Protective effects of kinetin against aluminum chloride and D-galactose induced cognitive impairment and oxidative damage in mouse. Brain Res Bull 134:262–272. https://doi.org/10.1016/j.brainresbull.2017.08.014

    Article  CAS  PubMed  Google Scholar 

  8. Xiao F, Li XG, Zhang XY et al (2011) Combined administration of D-galactose and aluminium induces Alzheimerlike lesions in brain. Neurosci Bull 27:143–155. https://doi.org/10.1007/s12264-011-1028-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feng L, Wang X, Peng F et al (2018) Walnut protein hydrolysates play a protective role on neurotoxicity induced by d-galactose and aluminum chloride in mice. Molecules 23:2308. https://doi.org/10.3390/molecules23092308

    Article  CAS  PubMed Central  Google Scholar 

  10. Yang W-N, Hu X-D, Han H et al (2014) The effects of valsartan on cognitive deficits induced by aluminum trichloride and d-galactose in mice. Neurol Res 36:651–658. https://doi.org/10.1179/1743132813y.0000000295

    Article  CAS  PubMed  Google Scholar 

  11. Shwe T, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2018) Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp Gerontol 101:13–36. https://doi.org/10.1016/j.exger.2017.10.029

    Article  CAS  PubMed  Google Scholar 

  12. Chiroma SM, Mohd Moklas MA, Mat Taib CN et al (2018) D-galactose and aluminium chloride induced rat model with cognitive impairments. Biomed Pharmacother 103:1602–1608. https://doi.org/10.1016/j.biopha.2018.04.152

    Article  CAS  PubMed  Google Scholar 

  13. Justin Thenmozhi A, William Raja TR, Manivasagam T et al (2017) Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutr Neurosci 20:360–368. https://doi.org/10.1080/1028415X.2016.1144846

    Article  CAS  PubMed  Google Scholar 

  14. Pike CJ (2017) Sex and the development of Alzheimer’s disease. J Neurosci Res 95:671–680. https://doi.org/10.1002/jnr.23827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carter CL, Resnick EM, Mallampalli M, Kalbarczyk A (2012) Sex and gender differences in alzheimer’s disease: recommendations for future research. J Women’s Heal 21:1018–1023. https://doi.org/10.1089/jwh.2012.3789

    Article  Google Scholar 

  16. Grimm A, Mensah-Nyagan AG, Eckert A (2016) Alzheimer, mitochondria and gender. Neurosci Biobehav Rev 67:89–101. https://doi.org/10.1016/j.neubiorev.2016.04.012

    Article  CAS  PubMed  Google Scholar 

  17. McAllister C, Long J, Bowers A et al (2010) Genetic targeting aromatase in male amyloid precursor protein transgenic mice down-regulates -secretase (BACE1) and prevents alzheimer-like pathology and cognitive impairment. J Neurosci 30:7326–7334. https://doi.org/10.1523/jneurosci.1180-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verdile G, Asih PR, Barron AM et al (2015) The impact of luteinizing hormone and testosterone on beta amyloid (Aβ) accumulation: animal and human clinical studies. Horm Behav 76:81–90. https://doi.org/10.1016/j.yhbeh.2015.05.020

    Article  CAS  PubMed  Google Scholar 

  19. Vincent B, Govitrapong P (2011) Activation of the α-secretase processing of AβPP as a therapeutic approach in alzheimer’s disease. J Alzheimer’s Dis 24:75–94. https://doi.org/10.3233/JAD-2011-110218

    Article  CAS  Google Scholar 

  20. Yao M, Nguyen TVV, Rosario ER et al (2008) Androgens regulate neprilysin expression: role in reducing β-amyloid levels. J Neurochem 105:2477–2488. https://doi.org/10.1111/j.1471-4159.2008.05341.x

    Article  CAS  PubMed  Google Scholar 

  21. Papasozomenos SC, Shanavas A (2002) Testosterone prevents the heat shock-induced overactivation of glycogen synthase kinase-3 but not of cyclin-dependent kinase 5 and c-Jun NH2-terminal kinase and concomitantly abolishes hyperphosphorylation of : Implications for Alzheimer’s disease. Proc Natl Acad Sci 99:1140–1145. https://doi.org/10.1073/pnas.032646799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang W-N, Han H, Hu X-D et al (2013) The effects of perindopril on cognitive impairment induced by d-galactose and aluminum trichloride via inhibition of acetylcholinesterase activity and oxidative stress. Pharmacol Biochem Behav 114–115:31–36. https://doi.org/10.1016/j.pbb.2013.10.027

    Article  CAS  PubMed  Google Scholar 

  23. Zhang LN, Sun YJ, Pan S et al (2013) Na+-K+-ATPase, a potent neuroprotective modulator against Alzheimer disease. Fundam Clin Pharmacol 27:96–103. https://doi.org/10.1111/fcp.12000

    Article  CAS  PubMed  Google Scholar 

  24. De Lores R, Arnaiz G (2007) Na+, K+-ATPase in the brain: Structure and function. Handb Neurochem Mol Neurobiol Neural Membr Transp. https://doi.org/10.1007/978-0-387-30380-2_10

    Article  Google Scholar 

  25. Holm TH, Lykke-Hartmann K (2016) Insights into the pathology of the α3 Na+/K+-ATPase ion pump in neurological disorders; lessons from animal models. Front Physiol 7:1–12. https://doi.org/10.3389/fphys.2016.00209

    Article  Google Scholar 

  26. Li S, Overman JJ, Katsman D et al (2010) Brain Na+, K+-ATPase Activity In Aging and Disease. Nat Neurosci 13:1496–1506. https://doi.org/10.1038/nn.2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kinoshita PF, Yshii LM, Orellana AMM et al (2017) Alpha 2 Na+, K+-ATPase silencing induces loss of inflammatory response and ouabain protection in glial cells. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-05075-9

    Article  CAS  Google Scholar 

  28. Ohnishi T, Yanazawa M, Sasahara T et al (2015) Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly. Proc Natl Acad Sci 112:E4465–E4474. https://doi.org/10.1073/pnas.1421182112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jaeger ECB, Miller LE, Goins EC et al (2020) Testosterone replacement causes dose-dependent improvements in spatial memory among aged male rats. Psychoneuroendocrinology 113:104550. https://doi.org/10.1016/j.psyneuen.2019.104550

    Article  CAS  PubMed  Google Scholar 

  30. Paylor R, Spencer CM, Yuva-Paylor LA, Pieke-Dahl S (2006) The use of behavioral test batteries, II: Effect of test interval. Physiol Behav 87:95–102. https://doi.org/10.1016/j.physbeh.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  31. Wang C, He L, Yan M et al (2014) Effects of polyprenols from pine needles of Pinus massoniana on ameliorating cognitive impairment in a d-galactose-induced mouse model. Age (Omaha) 36:9676. https://doi.org/10.1007/s11357-014-9676-6

    Article  CAS  Google Scholar 

  32. Seibenhener ML, Wooten MC (2015) Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. https://doi.org/10.3791/52434

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ibrahim MK, Sayed M et al (2020) Effects of chronic caffeine administration on behavioral and molecular adaptations to sensory contact model induced stress in adolescent male mice. Behav Genet 50:374–383. https://doi.org/10.1007/s10519-020-10003-1

    Article  PubMed  Google Scholar 

  34. Lueptow LM (2017) Novel object recognition test for the investigation of learning and memory in mice. J Vis Exp 2017:1–9. https://doi.org/10.3791/55718

    Article  Google Scholar 

  35. de Lima MNM, Presti-Torres J, Dornelles A et al (2011) Modulatory influence of dopamine receptors on consolidation of object recognition memory. Neurobiol Learn Mem 95:305–310. https://doi.org/10.1016/j.nlm.2010.12.007

    Article  CAS  PubMed  Google Scholar 

  36. Carroll JC, Rosario ER, Chang L et al (2007) Progesterone and estrogen regulate alzheimer-like neuropathology in female 3xTg-AD mice. J Neurosci 27:13357–13365. https://doi.org/10.1523/JNEUROSCI.2718-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khalifa M, Safar MM, Abdelsalam RM, Zaki HF (2020) Telmisartan protects against aluminum-induced alzheimer-like pathological changes in rats. Neurotox Res 37:275–285. https://doi.org/10.1007/s12640-019-00085-z

    Article  CAS  PubMed  Google Scholar 

  38. Bromley-Brits K, Deng Y, Song W (2011) Morris Water Maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp. https://doi.org/10.3791/2920

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jiménez-Rubio G, Herrera-Pérez JJ, Hernández-Hernández OT, Martínez-Mota L (2017) Relationship between androgen deficiency and memory impairment in aging and Alzheimer’s disease. Actas Esp Psiquiatr 45:227–247

    PubMed  Google Scholar 

  40. Kang L, Li S, Xing Z et al (2014) Dihydrotestosterone treatment delays the conversion from mild cognitive impairment to Alzheimer’s disease in SAMP8 mice. Horm Behav 65:505–515. https://doi.org/10.1016/j.yhbeh.2014.03.017

    Article  CAS  PubMed  Google Scholar 

  41. Celec P, Ostatníková D, Hodosy J (2015) On the effects of testosterone on brain behavioral functions. Front Neurosci 9:1–17. https://doi.org/10.3389/fnins.2015.00012

    Article  Google Scholar 

  42. Baydar T, Papp A, Aydin A et al (2003) Accumulation of aluminum in rat brain: Does it lead to behavioral and electrophysiological changes? Biol Trace Elem Res 92:231–244. https://doi.org/10.1385/BTER:92:3:231

    Article  CAS  PubMed  Google Scholar 

  43. Labban S, Alghamdi BS, Alshehri FS, Kurdi M (2021) Effects of melatonin and resveratrol on recognition memory and passive avoidance performance in a mouse model of Alzheimer’s disease. Behav Brain Res 402:113100. https://doi.org/10.1016/j.bbr.2020.113100

    Article  CAS  PubMed  Google Scholar 

  44. Xing Z, He Z, Wang S et al (2018) Ameliorative effects and possible molecular mechanisms of action of fibrauretine from Fibraurea recisa Pierre on d-galactose/AlCl3-mediated Alzheimer’s disease. RSC Adv 8:31646–31657. https://doi.org/10.1039/c8ra05356a

    Article  CAS  Google Scholar 

  45. Onaolapo OJ, Onaolapo AY, Omololu TA et al (2016) Exogenous testosterone, aging, and changes in behavioral response of gonadally intact male mice. J Exp Neurosci 2016:59–70. https://doi.org/10.4137/JEn.s39042

    Article  Google Scholar 

  46. Wagner BA, Braddick VC, Batson CG et al (2018) Effects of testosterone dose on spatial memory among castrated adult male rats. Psychoneuroendocrinology 89:120–130. https://doi.org/10.1016/j.psyneuen.2017.12.025

    Article  CAS  PubMed  Google Scholar 

  47. Spritzer MD, Daviau ED, Coneeny MK et al (2011) Effects of testosterone on spatial learning and memory in adult male rats. Horm Behav 59:484–496. https://doi.org/10.1016/j.yhbeh.2011.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huosheng D, Sunfang J, Zhang B et al (2016) Protective effects of testosterone on cognitive dysfunction in Alzheimer’s disease model rats induced by oligomeric beta amyloid peptide 1–42. J Toxicol Environ Heal - Part A Curr Issues 79:856–863. https://doi.org/10.1080/15287394.2016.1193114

    Article  CAS  Google Scholar 

  49. Gholaminejad A, Naghdi N, Gholamipour-Badie H, Nasehi M (2019) Repeated training creates spatial memory in an adult male rat model of testosterone-induced spatial learning impairment. Ann Mil Heal Sci Res 17:1–7. https://doi.org/10.5812/amh.88819

    Article  Google Scholar 

  50. Pope HG, Kouri EM, Hudson JI (2000) Effects of supraphysiologic doses of testosterone on mood and aggression in normal men: A randomized controlled trial. Arch Gen Psychiatry 57:133–140. https://doi.org/10.1001/archpsyc.57.2.133

    Article  CAS  PubMed  Google Scholar 

  51. Wood RI, Serpa RO (2020) Anabolic-androgenic steroid abuse and cognitive impairment: Testosterone IMPAIRS biconditional task performance in male rats. Behav Brain Res 379:112339. https://doi.org/10.1016/j.bbr.2019.112339

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sayed.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elfouly, A., Awny, M., Ibrahim, M.K. et al. Effects of Long-Acting Testosterone Undecanoate on Behavioral Parameters and Na + , K+-ATPase mRNA Expression in Mice with Alzheimer`s Disease. Neurochem Res 46, 2238–2248 (2021). https://doi.org/10.1007/s11064-021-03357-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03357-3

Keywords

Navigation