Skip to main content

Advertisement

Log in

Transcriptome Sequencing Identifies Potential Biomarker for White Matter Lesions Diagnosis in the Hypertension Population

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hypertension is confirmed to be one of the major risk factors of leukoaraiosis (LA). However, the pathogenesis of LA is not completely understood and there is no reliable indicator for the early diagnosis of LA in the hypertensive population. This study was designed to explore the potential biomarker for LA diagnosis in patients with hypertension. And it serves as the basis for the further study of LA mechanism. In this study, This study included 110 subjects, including 50 in the LA group and 60 in the control group. First, we performed transcriptome sequencing and quantitative PCR (qPCR) in four samples from the LA group, and three from the control group (seven people) to identify relevant long non-coding RNAs (long ncRNAs or lncRNA). The 103 samples were used for qPCR validation of relevant lncRNAs and the results were consistent with the sequencing. In-depth bioinformatics analysis were performed on differentially expressed (DE) lncRNAs and mRNAs. Go-functional enrichment analysis was performed on DE mRNAs. Some DE mRNA were enriched to biological processes associated with LA, And some lncRNAs related to DE mRNAs were traceable through cis/trans analysis, suggesting that they might be regulated in some way. Additionally, potential biomarkers for LA diagnosis in the hypertension population were identified via RT-qPCR and receive operating characteristic curve (ROC) analysis of lncRNA. One lncRNA, AC020928.1, has been demonstrated to be potential biomarkers for LA diagnosis in the hypertension population. The results of the present study indicated that the lncRNA may have an important role in the pathogenesis of LA and may be a novel target for further research. As the relationship between lncRNAs and LA is just beginning to be unraveled, their specific mechanisms require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Charidimou A, Pasi M, Fiorelli M, Shams S, von Kummer R, Pantoni L, Rost N (2016) Leukoaraiosis, Cerebral Hemorrhage, and Outcome After Intravenous Thrombolysis for Acute Ischemic Stroke: A Meta-Analysis (v1). Stroke 47(9):2364–2372. https://doi.org/10.1161/STROKEAHA.116.014096

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kongbunkiat K, Wilson D, Kasemsap N, Tiamkao S, Jichi F, Palumbo V, Hill MD, Buchan AM, Jung S, Mattle HP, Henninger N, Werring DJ (2017) Leukoaraiosis, intracerebral hemorrhage, and functional outcome after acute stroke thrombolysis. Neurology 88(7):638–645. https://doi.org/10.1212/WNL.0000000000003605

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lin J, Wang D, Lan L, Fan Y (2017) Multiple Factors Involved in the Pathogenesis of White Matter Lesions. Biomed Res Int 2017:9372050. https://doi.org/10.1155/2017/9372050

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lin Q, Huang WQ, Tzeng CM (2015) Genetic associations of leukoaraiosis indicate pathophysiological mechanisms in white matter lesions etiology. Rev Neurosci 26(3):343–358. https://doi.org/10.1515/revneuro-2014-0082

    Article  PubMed  Google Scholar 

  5. Uh J, Yezhuvath U, Cheng Y, Lu H (2010) In vivo vascular hallmarks of diffuse leukoaraiosis. Journal of magnetic resonance imaging : JMRI 32(1):184–190. https://doi.org/10.1002/jmri.22209

    Article  PubMed  Google Scholar 

  6. Mi T, Luo C, Hu Y, Qu C, Wang X, Guo S, Du Y (2017) Spectrum construction of differentially expressed circular RNAs in patients with leukoaraiosis and function analysis of differentially expressed genes. Mol Med Rep 16(3):2563–2569. https://doi.org/10.3892/mmr.2017.6871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hung T, Chang HY (2010) Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 7(5):582–585. https://doi.org/10.4161/rna.7.5.13216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes development 25(18):1915–1927. https://doi.org/10.1101/gad.17446611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, Fukuda S, Ru K, Frith MC, Gongora MM, Grimmond SM, Hume DA, Hayashizaki Y, Mattick JS (2006) Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 16(1):11–19. https://doi.org/10.1101/gr.4200206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yunusov D, Anderson L, DaSilva LF, Wysocka J, Ezashi T, Roberts RM, Verjovski-Almeida S (2016) HIPSTR and thousands of lncRNAs are heterogeneously expressed in human embryos, primordial germ cells and stable cell lines. Sci Rep 6:32753. https://doi.org/10.1038/srep32753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J, Huang J, Li M, Wu X, Wen L, Lao K, Li R, Qiao J, Tang F (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20(9):1131–1139. https://doi.org/10.1038/nsmb.2660

    Article  CAS  PubMed  Google Scholar 

  12. Liu SJ, Nowakowski TJ, Pollen AA, Lui JH, Horlbeck MA, Attenello FJ, He D, Weissman JS, Kriegstein AR, Diaz AA, Lim DA (2016) Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol 17:67. https://doi.org/10.1186/s13059-016-0932-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aftab MN, Dinger ME, Perera RJ (2014) The role of microRNAs and long non-coding RNAs in the pathology, diagnosis, and management of melanoma. Arch Biochem Biophys 563:60–70. https://doi.org/10.1016/j.abb.2014.07.022

    Article  CAS  PubMed  Google Scholar 

  14. Boon RA, Jaé N, Holdt L, Dimmeler S (2016) Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets? J Am Coll Cardiol 67(10):1214–1226. https://doi.org/10.1016/j.jacc.2015.12.051

    Article  CAS  PubMed  Google Scholar 

  15. Fu Y, Yan Y (2018) Emerging Role of Immunity in Cerebral Small Vessel Disease. Front Immunol 9:67. https://doi.org/10.3389/fimmu.2018.00067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Slaby O, Laga R, Sedlacek O (2017) Therapeutic targeting of non-coding RNAs in cancer. Biochem J 474(24):4219–4251. https://doi.org/10.1042/BCJ20170079

    Article  CAS  PubMed  Google Scholar 

  17. Andersen RE, Lim DA (2018) Forging our understanding of lncRNAs in the brain. Cell Tissue Res 371(1):55–71. https://doi.org/10.1007/s00441-017-2711-z

    Article  CAS  PubMed  Google Scholar 

  18. Steingart A, Hachinski VC, Lau C, Fox AJ, Diaz F, Cape R, Lee D, Inzitari D, Merskey H (1987) Cognitive and neurologic findings in subjects with diffuse white matter lucencies on computed tomographic scan (leuko-araiosis). Arch Neurol 44(1):32–35. https://doi.org/10.1001/archneur.1987.00520130024012

    Article  CAS  PubMed  Google Scholar 

  19. Drozda J Jr, Messer JV, Spertus J, Abramowitz B, Alexander K, Beam CT, Bonow RO, Burkiewicz JS, Crouch M, Goff DC Jr, Hellman R, James T 3rd, King ML, Machado EA, Ortiz E, O’Toole M, Persell SD, Pines JM, Rybicki FJ, Sadwin LB, Society of Thoracic Surgeons (2011) ACCF/AHA/AMA-PCPI 2011 performance measures for adults with coronary artery disease and hypertension: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures and the American Medical Association-Physician Consortium for Performance Improvement. Journal of the American College of Cardiology 58(3):316–336. https://doi.org/10.1016/j.jacc.2011.05.002

    Article  PubMed  Google Scholar 

  20. Leung LY, Bartz TM, Rice K, Floyd J, Psaty B, Gutierrez J, Longstreth WT Jr, Mukamal KJ (2017) Blood Pressure and Heart Rate Measures Associated With Increased Risk of Covert Brain Infarction and Worsening Leukoaraiosis in Older Adults. Arterioscler Thromb Vasc Biol 37(8):1579–1586. https://doi.org/10.1161/ATVBAHA.117.309298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baradaran H, Mtui EE, Richardson JE, Delgado D, Gupta A (2017) Hemispheric Differences in Leukoaraiosis in Patients with Carotid Artery Stenosis: A Systematic Review. Clin Neuroradiol 27(1):7–13. https://doi.org/10.1007/s00062-015-0402-2

    Article  CAS  PubMed  Google Scholar 

  22. Zhu H, Wang Q, Yao Y, Fang J, Sun F, Ni Y, Shen Y, Wang H, Shao S (2015) Microarray analysis of Long non-coding RNA expression profiles in human gastric cells and tissues with Helicobacter pylori Infection. BMC Med Genomics 8:84. https://doi.org/10.1186/s12920-015-0159-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Z, Li X, Sun N, Xu Y, Meng Y, Yang C, Wang Y, Zhang K (2014) Microarray profiling and co-expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder. PLoS ONE 9(3):e93388. https://doi.org/10.1371/journal.pone.0093388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cai Y, Yang Y, Chen X, Wu G, Zhang X, Liu Y, Yu J, Wang X, Fu J, Li C, Jose PA, Zeng C, Zhou L (2016) Circulating “lncRNA OTTHUMT00000387022” from monocytes as a novel biomarker for coronary artery disease. Cardiovasc Res 112(3):714–724. https://doi.org/10.1093/cvr/cvw022

    Article  CAS  PubMed  Google Scholar 

  25. Wang YN, Shan K, Yao MD, Yao J, Wang JJ, Li X, Liu B, Zhang YY, Ji Y, Jiang Q, Yan B (2016) Long Noncoding RNA-GAS5: A Novel Regulator of Hypertension-Induced Vascular Remodeling. Hypertension (Dallas, Tex.: 1979) 68(3):736–748. https://doi.org/10.1161/HYPERTENSIONAHA.116.07259

    Article  CAS  Google Scholar 

  26. Cheng HS, Njock MS, Khyzha N, Dang LT, Fish JE (2014) Noncoding RNAs regulate NF-κB signaling to modulate blood vessel inflammation. Front Genet 5:422. https://doi.org/10.3389/fgene.2014.00422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vausort M, Wagner DR, Devaux Y (2014) Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 115(7):668–677. https://doi.org/10.1161/CIRCRESAHA.115.303836

    Article  CAS  PubMed  Google Scholar 

  28. Fernando MS, Simpson JE, Matthews F, Brayne C, Lewis CE, Barber R, Kalaria RN, Forster G, Esteves F, Wharton SB, Shaw PJ, O’Brien JT, Ince PG, MRC Cognitive Function and Ageing Neuropathology Study Group (2006) White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 37(6):1391–1398. https://doi.org/10.1161/01.STR.0000221308.94473.14

    Article  PubMed  Google Scholar 

  29. Miki K, Ishibashi S, Sun L, Xu H, Ohashi W, Kuroiwa T, Mizusawa H (2009) Intensity of chronic cerebral hypoperfusion determines white/gray matter injury and cognitive/motor dysfunction in mice. J Neurosci Res 87(5):1270–1281. https://doi.org/10.1002/jnr.21925

    Article  CAS  PubMed  Google Scholar 

  30. Sánchez Y, Huarte M (2013) Long non-coding RNAs: challenges for diagnosis and therapies. Nucleic Acid Ther 23(1):15–20. https://doi.org/10.1089/nat.2012.0414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ueno M, Chiba Y, Matsumoto K, Murakami R, Fujihara R, Kawauchi M, Miyanaka H, Nakagawa T (2016) Blood-brain barrier damage in vascular dementia. Neuropathology : official journal of the Japanese Society of Neuropathology 36(2):115–124. https://doi.org/10.1111/neup.12262

    Article  CAS  Google Scholar 

  32. Zenaro E, Piacentino G, Constantin G (2017) The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis 107:41–56. https://doi.org/10.1016/j.nbd.2016.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yuan B, Shi H, Zheng K, Su Z, Su H, Zhong M, He X, Zhou C, Chen H, Xiong Q, Zhang Y, Yang Z (2017) MCP-1-mediated activation of microglia promotes white matter lesions and cognitive deficits by chronic cerebral hypoperfusion in mice. Mol Cell Neurosci 78:52–58. https://doi.org/10.1016/j.mcn.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  34. Yu Y, Yu Z, Xie M, Wang W, Luo X (2018) Hv1 proton channel facilitates production of ROS and pro-inflammatory cytokines in microglia and enhances oligodendrocyte progenitor cells damage from oxygen-glucose deprivation in vitro. Biochem Biophys Res Commun 498(1):1–8. https://doi.org/10.1016/j.bbrc.2017.06.197

    Article  CAS  PubMed  Google Scholar 

  35. Toyama K, Spin JM, Deng AC, Huang TT, Wei K, Wagenhäuser MU, Yoshino T, Nguyen H, Mulorz J, Kundu S, Raaz U, Adam M, Schellinger IN, Jagger A, Tsao PS (2018) MicroRNA-Mediated Therapy Modulating Blood-Brain Barrier Disruption Improves Vascular Cognitive Impairment. Arterioscler Thromb Vasc Biol 38(6):1392–1406. https://doi.org/10.1161/ATVBAHA.118.310822

    Article  CAS  PubMed  Google Scholar 

  36. Cheng P, Zuo X, Ren Y, Bai S, Tang W, Chen X, Wang G, Wang H, Huang W, Xie P (2016) Adenosine A1-Receptors Modulate mTOR Signaling to Regulate White Matter Inflammatory Lesions Induced by Chronic Cerebral Hypoperfusion. Neurochem Res 41(12):3272–3277. https://doi.org/10.1007/s11064-016-2056-0

    Article  CAS  PubMed  Google Scholar 

  37. Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8(9):1254–1266. https://doi.org/10.7150/ijbs.4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fornage M, Chiang YA, O’Meara ES, Psaty BM, Reiner AP, Siscovick DS, Tracy RP, Longstreth WT Jr (2008) Biomarkers of Inflammation and MRI-Defined Small Vessel Disease of the Brain: The Cardiovascular Health Study. Stroke 39(7):1952–1959. https://doi.org/10.1161/STROKEAHA.107.508135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steinman L (2015) No quiet surrender: molecular guardians in multiple sclerosis brain. J Clin Investig 125(4):1371–1378. https://doi.org/10.1172/JCI74255

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu Q, He S, Groysman L, Shaked D, Russin J, Scotton TC, Cen S, Mack WJ (2013) White matter injury due to experimental chronic cerebral hypoperfusion is associated with C5 deposition. PLoS ONE 8(12):e84802. https://doi.org/10.1371/journal.pone.0084802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shoamanesh A, Preis SR, Beiser AS, Vasan RS, Benjamin EJ, Kase CS, Wolf PA, DeCarli C, Romero JR, Seshadri S (2015) Inflammatory biomarkers, cerebral microbleeds, and small vessel disease: Framingham Heart Study. Neurology 84(8):825–832. https://doi.org/10.1212/WNL.0000000000001279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin ZG, Wang QS, Yu K, Wang WW, Lin H, Yang ZH (2018) Sex differences in associations between blood lipids and cerebral small vessel disease. Nutr Metab Cardiovasc Dis 28(1):28–34. https://doi.org/10.1016/j.numecd.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  43. Carmelli D, Swan GE, Reed T, Wolf PA, Miller BL, DeCarli C (1999) Midlife cardiovascular risk factors and brain morphology in identical older male twins. Neurology 52(6):1119–1124. https://doi.org/10.1212/wnl.52.6.1119

    Article  CAS  PubMed  Google Scholar 

  44. Ke D, Zhou F, Liang H, Xu Y, Lou H (2018) Hypertriglyceridemia Is Associated with Reduced Leukoaraiosis Severity in Patients with a Small Vessel Stroke. Behav Neurol 2018:1361780. https://doi.org/10.1155/2018/1361780

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yamawaki M, Wada-Isoe K, Yamamoto M, Nakashita S, Uemura Y, Takahashi Y, Nakayama T, Nakashima K (2015) Association of cerebral white matter lesions with cognitive function and mood in Japanese elderly people: a population-based study. Brain and behavior 5(3):e00315. https://doi.org/10.1002/brb3.315

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhu X, Parks JS (2012) New roles of HDL in inflammation and hematopoiesis. Annu Rev Nutr 32:161–182. https://doi.org/10.1146/annurev-nutr-071811-150709

    Article  CAS  PubMed  Google Scholar 

  47. Brisset M, Boutouyrie P, Pico F, Zhu Y, Zureik M, Schilling S, Dufouil C, Mazoyer B, Laurent S, Tzourio C, Debette S (2013) Large-vessel correlates of cerebral small-vessel disease. Neurology 80(7):662–669. https://doi.org/10.1212/WNL.0b013e318281ccc2

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stukas S, Robert J, Wellington CL (2014) High-density lipoproteins and cerebrovascular integrity in Alzheimer’s disease. Cell Metab 19(4):574–591. https://doi.org/10.1016/j.cmet.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  49. Wardlaw JM, Smith C, Dichgans M (2013) Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. The Lancet Neurology 12(5):483–497. https://doi.org/10.1016/S1474-4422(13)70060-7

    Article  PubMed  Google Scholar 

  50. Jin C, Shi W, Wang F, Shen X, Qi J, Cong H, Yuan J, Shi L, Zhu B, Luo X, Zhang Y, Ju S (2016) Long non-coding RNA HULC as a novel serum biomarker for diagnosis and prognosis prediction of gastric cancer. Oncotarget 7(32):51763–51772. https://doi.org/10.18632/oncotarget.10107

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yang X, Yang J, Wang J, Wen Q, Wang H, He J, Hu S, He W, Du X, Liu S, Ma L (2016) Microarray analysis of long noncoding RNA and mRNA expression profiles in human macrophages infected with Mycobacterium tuberculosis. Sci Rep 6:38963. https://doi.org/10.1038/srep38963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by The National Natural Science Fund of China (Grant Number 81771263) and The Key Research and Development Program of Shandong Province (Grant Number 2019GSF108030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanqiang Qu.

Ethics declarations

Conflict of interest

None of the authors have potential conflicts of interest to be disclosed.

Ethical Approval

The current study was performed in accordance with the guidelines of the Helsinki Declaration.

Informed Consent

Written informed consent was obtained from all subjects. All experimental protocols were reviewed and approved by the Ethics Committee of Shandong Provincial Hospital Affiliated to Shandong University (Jinan, China).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Sun, P., Han, F. et al. Transcriptome Sequencing Identifies Potential Biomarker for White Matter Lesions Diagnosis in the Hypertension Population. Neurochem Res 46, 2079–2088 (2021). https://doi.org/10.1007/s11064-021-03346-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03346-6

Keywords

Navigation