Skip to main content

Advertisement

Log in

GPER1 Modulates Synaptic Plasticity During the Development of Temporal Lobe Epilepsy in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

G-protein coupled estrogen receptor 1 (GPER1) is a novel type of estrogen receptor. Several studies have shown that it has an anti-inflammatory action,which plays an important role in remyelination and cognitive ability adjustment. However, whether it is involved in the development of temporal lobe epilepsy (TLE) is still unknown. The present study established a TLE model by intraperitoneal injection of lithium chloride (3 mmol/kg) and pilocarpine (50 mg/kg) in rats to study the effect of GPER1 in the synaptic plasticity during the development of temporal lobe epilepsy. A microinjection cannula was implanted into the lateral ventricle region of rats via a stereotaxic instrument. G-1 is the specific GPER1 agonist and G15 is the specific GPER1 antagonist. The G1 or G15 and Dimethyl sulfoxide were injected into the rat brains in the intervention groups and control group, respectively. After G1 intervention, the learning and memory abilities and hippocampal neuron damage in epileptic rats were significantly improved, while G15 weakened the neuroprotective effect of GPER1. Meanwhile, G1 controlled the abnormal formation of hippocampal mossy fiber sprouting caused by seizures, and participated in the regulation of synaptic plasticity by reducing the expression of Synapsin I and increasing the expression of gephyrin. Inhibitory synapse gephyrin may play a significant role in synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GPER1:

G protein-coupled estrogen receptor 1

TLE:

Temporal lobe epilepsy

SE:

Status epilepticus

DMSO:

Dimethyl sulfoxide

MFS:

Mossy fiber sprouting

References

  1. Akama KT, Thompson LI, Milner TA, McEwen BS (2013) Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines. J Biol Chem 288:6438–6450

    Article  CAS  Google Scholar 

  2. Alexander A, Irving AJ, Harvey J (2017) Emerging roles for the novel estrogen-sensing receptor GPER1 in the CNS. Neuropharmacology 113:652–660

    Article  CAS  Google Scholar 

  3. Kumar S, Singh MB, Shukla G, Vishnubhatla S, Srivastava MVP, Goyal V, Prasad K, Patterson V (2017) Effective clinical classification of chronic epilepsy into focal and generalized: a cross sectional study. Seizure 53:81–85

    Article  Google Scholar 

  4. Temkin NR (2001) Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 42:515–524

    Article  CAS  Google Scholar 

  5. Prossnitz ER, Maggiolini M (2009) Mechanisms of estrogen signaling and gene expression via GPR30. Mol Cell Endocrinol 308:32–38

    Article  CAS  Google Scholar 

  6. Mendes-Oliveira J, Lopes Campos F, Videira RA, Baltazar G (2017) GPER activation is effective in protecting against inflammation-induced nigral dopaminergic loss and motor function impairment. Brain Behav Immun 64:296–307

    Article  CAS  Google Scholar 

  7. Hirahara Y, Matsuda KI, Yamada H, Saitou A, Morisaki S, Takanami K, Boggs JM, Kawata M (2013) G protein-coupled receptor 30 contributes to improved remyelination after cuprizone-induced demyelination. Glia 61:420–431

    Article  Google Scholar 

  8. Kurt AH, Bosnak M, Inan SY, Celik A, Uremis MM (2016) Epileptogenic effects of G protein-coupled estrogen receptor 1 in the rat pentylenetetrazole kindling model of epilepsy. Pharmacol Rep 68:66–70

    Article  CAS  Google Scholar 

  9. Zuo D, Wang F, Rong W, Wen Y, Sun K, Zhao X, Ren X, He Z, Ding N, Ma L, Xu F (2020) The novel estrogen receptor GPER1 decreases epilepsy severity and susceptivity in the hippocampus after status epilepticus. Neurosci Lett 728:134978

    Article  CAS  Google Scholar 

  10. Iravani M, Lagerquist MK, Karimian E, Chagin AS, Ohlsson C, Savendahl L (2019) Effects of the selective GPER1 agonist G1 on bone growth. Endocr Connect 8:1302–1309

    Article  CAS  Google Scholar 

  11. Liu C, Liao Y, Fan S, Fu X, Xiong J, Zhou S, Zou M, Wang J (2019) G-protein-coupled estrogen receptor antagonist G15 decreases estrogen-induced development of non-small cell lung cancer. Oncol Res 27:283–292

    Article  Google Scholar 

  12. Wang XS, Yue J, Hu LN, Tian Z, Zhang K, Yang L, Zhang HN, Guo YY, Feng B, Liu HY, Wu YM, Zhao MG, Liu SB (2020) Activation of G protein-coupled receptor 30 protects neurons by regulating autophagy in astrocytes. Glia 68:27–43

    Article  Google Scholar 

  13. Hart D, Nilges M, Pollard K, Lynn T, Patsos O, Shiel C, Clark SM, Vasudevan N (2014) Activation of the G-protein coupled receptor 30 (GPR30) has different effects on anxiety in male and female mice. Steroids 81:49–56

    Article  CAS  Google Scholar 

  14. Kim TY, Yi JS, Chung SJ, Kim DK, Byun HR, Lee JY, Koh JY (2007) Pyruvate protects against kainate-induced epileptic brain damage in rats. Exp Neurol 208:159–167

    Article  CAS  Google Scholar 

  15. Bailey CH, Kandel ER, Harris KM (2015) Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb Perspect Biol 7:a021758

    Article  Google Scholar 

  16. Lin H, Huang Y, Wang Y, Jia J (2011) Spatiotemporal profile of N-cadherin expression in the mossy fiber sprouting and synaptic plasticity following seizures. Mol Cell Biochem 358:201–205

    Article  CAS  Google Scholar 

  17. Rezende GH, Guidine PA, Medeiros Dde C, Moraes-Santos T, Mello LE, Moraes MF (2015) Protein-caloric dietary restriction inhibits mossy fiber sprouting in the pilocarpine model of TLE without significantly altering seizure phenotype. Epilepsy Res 117:85–89

    Article  CAS  Google Scholar 

  18. Bonanomi D, Pennuto M, Rigoni M, Rossetto O, Montecucco C, Valtorta F (2005) Taipoxin induces synaptic vesicle exocytosis and disrupts the interaction of synaptophysin I with VAMP2. Mol Pharmacol 67:1901–1908

    Article  CAS  Google Scholar 

  19. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  Google Scholar 

  20. Kim JE, Kim YJ, Lee DS, Kim JY, Ko AR, Hyun HW, Kim MJ, Kang TC (2016) PLPP/CIN regulates bidirectional synaptic plasticity via GluN2A interaction with postsynaptic proteins. Sci Rep 6:26576

    Article  CAS  Google Scholar 

  21. Ma J, Wang J, Lv C, Pang J, Han B, Wang M, Gen Y (2017) The role of hippocampal structural synaptic plasticity in repetitive transcranial magnetic stimulation to improve cognitive function in male SAMP8 mice. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 41:137–44

    Article  CAS  Google Scholar 

  22. Nikolaev M, Heggelund P (2015) Functions of synapsins in corticothalamic facilitation: important roles of Synapsin I. J Physiol 593:4499–4510

    Article  CAS  Google Scholar 

  23. Sun J, Bronk P, Liu X, Han W, Sudhof TC (2006) Synapsins regulate use-dependent synaptic plasticity in the calyx of Held by a Ca2+/calmodulin-dependent pathway. Proc Natl Acad Sci USA 103:2880–2885

    Article  CAS  Google Scholar 

  24. Jacob TC, Moss SJ, Jurd R (2008) GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 9:331–343

    Article  CAS  Google Scholar 

  25. Nawrotzki R, Islinger M, Vogel I, Volkl A, Kirsch J (2012) Expression and subcellular distribution of gephyrin in non-neuronal tissues and cells. Histochem Cell Biol 137:471–482

    Article  CAS  Google Scholar 

  26. Zacchi P, Antonelli R, Cherubini E (2014) Gephyrin phosphorylation in the functional organization and plasticity of GABAergic synapses. Front Cell Neurosci 8:103

    Article  Google Scholar 

  27. Song P, Liu Y, Yu X, Wu J, Poon AN, Demaio A, Wang W, Rudan I, Chan KY (2017) Prevalence of epilepsy in China between 1990 and 2015: a systematic review and meta-analysis. J Global Health 7:020706

    Article  Google Scholar 

  28. Busch RM, Hogue O, Kattan MW, Hamberger M, Drane DL, Hermann B, Kim M, Ferguson L, Bingaman W, Gonzalez-Martinez J, Najm IM, Jehi L (2018) Nomograms to predict naming decline after temporal lobe surgery in adults with epilepsy. Neurology 91:e2144–e2152

    Article  Google Scholar 

  29. Uribe-San-Martin R, Ciampi E, Di Giacomo R, Vasquez M, Carcamo C, Godoy J, Lo Russo G, Tassi L (2018) Corpus callosum atrophy and post-surgical seizures in temporal lobe epilepsy associated with hippocampal sclerosis. Epilepsy Res 142:29–35

    Article  Google Scholar 

  30. Chun E, Bumanglag AV, Burke SN, Sloviter RS (2019) Targeted hippocampal GABA neuron ablation by stable substance P-saporin causes hippocampal sclerosis and chronic epilepsy in rats. Epilepsia 60:e52–e57

    Article  CAS  Google Scholar 

  31. Thomazeau A, Bosch M, Essayan-Perez S, Barnes SA, De Jesus-Cortes H, Bear MF (2020) Dissociation of functional and structural plasticity of dendritic spines during NMDAR and mGluR-dependent long-term synaptic depression in wild-type and fragile X model mice. Mol Psychiatry. https://doi.org/10.1038/s41380-020-0821-6

    Article  PubMed  Google Scholar 

  32. Hamidi N, Nozad A, Sheikhkanloui Milan H, Amani M (2019) Okadaic acid attenuates short-term and long-term synaptic plasticity of hippocampal dentate gyrus neurons in rats. Neurobiol Learn Mem 158:24–31

    Article  CAS  Google Scholar 

  33. Ma T, Cheng Y, Roltsch Hellard E, Wang X, Lu J, Gao X, Huang CCY, Wei XY, Ji JY, Wang J (2018) Bidirectional and long-lasting control of alcohol-seeking behavior by corticostriatal LTP and LTD. Nat Neurosci 21:373–383

    Article  CAS  Google Scholar 

  34. Pietras B, Devalle F, Roxin A, Daffertshofer A, Montbrio E (2019) Exact firing rate model reveals the differential effects of chemical versus electrical synapses in spiking networks. Phys Rev E 100:042412

    Article  CAS  Google Scholar 

  35. Hawley WR, Grissom EM, Moody NM, Dohanich GP, Vasudevan N (2014) Activation of G-protein-coupled receptor 30 is sufficient to enhance spatial recognition memory in ovariectomized rats. Behav Brain Res 262:68–73

    Article  CAS  Google Scholar 

  36. Chen XM, Ji SF, Liu YH, Xue XM, Xu J, Gu ZH, Deng SL, Liu CD, Wang H, Chang YM, Wang XC (2020) Ginsenoside Rd ameliorates auditory cortex injury associated with military aviation noise-induced hearing loss by activating SIRT1/PGC-1alpha signaling pathway. Front Physiol 11:788

    Article  CAS  Google Scholar 

  37. Chandrasekaran K, Choi J, Arvas MI, Salimian M, Singh S, Xu S, Gullapalli RP, Kristian T, Russell JW (2020) Nicotinamide mononucleotide administration prevents experimental diabetes-induced cognitive impairment and loss of hippocampal neurons. Int J Mol Sci 21:3756

    Article  CAS  Google Scholar 

  38. Cavarsan CF, Malheiros J, Hamani C, Najm I, Covolan L (2018) Is mossy fiber sprouting a potential therapeutic target for epilepsy? Front Neurol 9:1023

    Article  Google Scholar 

  39. Ginsberg SD, Maesako M, Zoltowska KM, Berezovska O (2019) Synapsin 1 promotes Aβ generation via BACE1 modulation. PloS One 14:e0226368

    Article  Google Scholar 

  40. Lionel AC, Vaags AK, Sato D, Gazzellone MJ, Mitchell EB, Chen HY, Costain G, Walker S, Egger G, Thiruvahindrapuram B, Merico D, Prasad A, Anagnostou E, Fombonne E, Zwaigenbaum L, Roberts W, Szatmari P, Fernandez BA, Georgieva L, Brzustowicz LM, Roetzer K, Kaschnitz W, Vincent JB, Windpassinger C, Marshall CR, Trifiletti RR, Kirmani S, Kirov G, Petek E, Hodge JC, Bassett AS, Scherer SW (2013) Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Hum Mol Genet 22:2055–2066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Ningxia Medical University and Ningxia Hui Autonomous Region to support this work.

Funding

This work was supported by The 13.5 Major Scientific and Technological Projects of the Ningxia Hui Autonomous Region [Grant No. 2016BZ07], Ningxia Natural Science Foundation [Grant No. NZ17069], and Ningxia Medical University Advantage Discipline Group Project [Grant No. XY201902].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianxiang Zhang or Feng Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11064_2021_3336_MOESM1_ESM.tif

Fig. S. 1 The expression of GPER1 in hippocampus CA3 and DG regions in rats per group after intervention. (a) Immunohistochemistry in rats per group, (b) The expression of GPER1 in each group of rats; scale bar = 20 μm. Supplementary material 1 (TIF 20883.0 kb)

11064_2021_3336_MOESM2_ESM.tif

Fig. S. 2 Nissl staining was used to detect the damage and repair of CA3 and DG regions’ hippocampal neurons per group in rats; scale bar = 20 μm. Supplementary material 2 (TIF 23375.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, Y., Guo, L. et al. GPER1 Modulates Synaptic Plasticity During the Development of Temporal Lobe Epilepsy in Rats. Neurochem Res 46, 2019–2032 (2021). https://doi.org/10.1007/s11064-021-03336-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03336-8

Keywords

Navigation