Skip to main content

Advertisement

Log in

Epigenetic Modulation in Parkinson’s Disease and Potential Treatment Therapies

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the recent past, huge emphasis has been given to the epigenetic alterations of the genes responsible for the cause of neurological disorders. Earlier, the scientists believed somatic changes and modifications in the genetic makeup of DNA to be the main cause of the neurodegenerative diseases. With the increase in understanding of the neural network and associated diseases, it was observed that alterations in the gene expression were not always originated by the change in the genetic sequence. For this reason, extensive research has been conducted to understand the role of epigenetics in the pathophysiology of several neurological disorders including Alzheimer’s disease, Parkinson’s disease and, Huntington’s disease. In a healthy person, the epigenetic modifications play a crucial role in maintaining the homeostasis of a cell by either up-regulating or down-regulating the genes. Therefore, improved understanding of these modifications may provide better insight about the diseases and may serve as potential therapeutic targets for their treatment. The present review describes various epigenetic modifications involved in the pathology of Parkinson’s Disease (PD) backed by multiple researches carried out to study the gene expression regulation related to the epigenetic alterations. Additionally, we will briefly go through the current scenario about the various treatment therapies including small molecules and multiple phytochemicals potent enough to reverse these alterations and the future directions for a better management of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Abbreviations

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PD:

Parkinson’s disease

DA:

Dopaminergic

HDAC:

Histone deacetylases

iPSC:

Induced pluripotent stem cell

TNF-α:

Tumor necrosis factor

MPTPq:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

CNS:

Central nervous system

SNpc:

Substantia nigra pars compacta

ROS:

Reactive oxygen species

TH:

Tyrosine hydroxylase

References

  1. Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103(6):1661. https://doi.org/10.1073/pnas.0509567103

    Article  CAS  PubMed  Google Scholar 

  2. Wakabayashi K, Tanji K, Mori F, Takahashi H (2007) The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of α-synuclein aggregates. Neuropathology 27(5):494–506. https://doi.org/10.1111/j.1440-1789.2007.00803.x

    Article  PubMed  Google Scholar 

  3. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R, Ikram MA, Ioannidis JPA, Hadjigeorgiou GM, Bis JC, Martinez M, Perlmutter JS, Goate A, Marder K, Fiske B, Sutherland M, Xiromerisiou G, Myers RH, Clark LN, Stefansson K, Hardy JA, Heutink P, Chen H, Wood NW, Houlden H, Payami H, Brice A, Scott WK, Gasser T, Bertram L, Eriksson N, Foroud T, Singleton AB, International Parkinson's Disease Genomics Consortium (IPDGC); Parkinson's Study Group (PSG) Parkinson's Research: The Organized GENetics Initiative (PROGENI); 23andMe; GenePD; NeuroGenetics Research Consortium (NGRC); Hussman Institute of Human Genomics (HIHG); Ashkenazi Jewish Dataset Investigator; Cohorts for Health and Aging Research in Genetic Epidemiology (CHARGE); North American Brain Expression Consortium (NABEC); United Kingdom Brain Expression Consortium (UKBEC); Greek Parkinson's Disease Consortium; Alzheimer Genetic Analysis Group (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nature Genetics 46(9):989–993. https://doi.org/10.1038/ng.3043

  4. Santiago P (2012) Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. Sci World J 2012:846824. https://doi.org/10.1100/2012/846824

    Article  CAS  Google Scholar 

  5. Hamza TH, Payami H (2010) The heritability of risk and age at onset of Parkinson’s disease after accounting for known genetic risk factors. J Hum Genet 55(4):241–243. https://doi.org/10.1038/jhg.2010.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Keller MF, Saad M, Bras J, Bettella F, Nicolaou N, Simón-Sánchez J, Mittag F, Büchel F, Sharma M, Gibbs JR, Schulte C, Moskvina V, Durr A, Holmans P, Kilarski LL, Guerreiro R, Hernandez DG, Brice A, Ylikotila P, Stefánsson H, Majamaa K, Morris HR, Williams N, Gasser T, Heutink P, Wood NW, Hardy J, Martinez M, Singleton AB, Nalls MA, Consortium ftIPsDG, 2 TWTCCC (2012) Using genome-wide complex trait analysis to quantify ‘missing heritability’ in Parkinson’s disease. Hum Mol Genet 21(22):4996–5009. doi:https://doi.org/10.1093/hmg/dds335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jankovic J, Stacy M (2007) Medical management of levodopa-associated motor complications in patients with Parkinson’s disease. CNS Drugs 21(8):677–692

    Article  CAS  Google Scholar 

  8. Schrag A (2005) Entacapone in the treatment of Parkinson’s disease. Lancet Neurol 4(6):366–370

    Article  CAS  Google Scholar 

  9. Chase TN, Oh JD (2000) Striatal dopamine-and glutamate-mediated dysregulation in experimental parkinsonism. Trends Neurosci 23:S86–S91

    Article  CAS  Google Scholar 

  10. Jankovic J, Aguilar LG (2008) Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr Dis Treat 4(4):743

    Article  CAS  Google Scholar 

  11. Fahn S (2000) The spectrum of levodopa-induced dyskinesias. Ann Neurol 47(4 Suppl 1):S2–S9; discussion S9–S11

  12. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057. https://doi.org/10.1038/nbt.1685

    Article  CAS  Google Scholar 

  13. Labbé C, Lorenzo-Betancor O, Ross OA (2016) Epigenetic regulation in Parkinson’s disease. Acta Neuropathol 132(4):515–530. doi:https://doi.org/10.1007/s00401-016-1590-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Masliah E, Dumaop W, Galasko D, Desplats P (2013) Distinctive patterns of DNA methylation associated with Parkinson disease. Epigenetics 8(10):1030–1038. doi:https://doi.org/10.4161/epi.25865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keller M, Saad M, Bras J, Bettella F, Nicolaou N, Simón-Sánchez J, Mittag F, Buchel F, Sharma M, Gibbs J, International Parkinson’s Disease Genomics Consortium (IPDGC) Wellcome Trust Case Control Consortium 2 (WTCCC2) (2012) Using genome-wide complex trait analysis to quantify ‘missing heritability’ in Parkinson’s disease. Hum Mol Genet 21(4996):e5009

    Google Scholar 

  16. Obeid R, Schadt A, Dillmann U, Kostopoulos P, Fassbender K, Herrmann W (2009) Methylation status and neurodegenerative markers in Parkinson disease. Clin Chem 55(10):1852–1860. https://doi.org/10.1373/clinchem.2009.125021

    Article  CAS  PubMed  Google Scholar 

  17. Fernández-Santiago R, Carballo-Carbajal I, Castellano G, Torrent R, Richaud Y, Sánchez-Danés A, Vilarrasa-Blasi R, Sánchez-Pla A, Mosquera JL, Soriano J, López-Barneo J, Canals JM, Alberch J, Raya Á, Vila M, Consiglio A, Martín-Subero JI, Ezquerra M, Tolosa E (2015) Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson’s disease patients. EMBO Mol Med 7(12):1529–1546. https://doi.org/10.15252/emmm.201505439

  18. Jowaed A, Schmitt I, Kaut O, Wüllner U (2010) Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. The Journal of Neuroscience 30(18):6355–6359. https://doi.org/10.1523/JNEUROSCI.6119-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsumoto L, Takuma H, Tamaoka A, Kurisaki H, Date H, Tsuji S, Iwata A (2010) CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLOS ONE 5(11):e15522. https://doi.org/10.1371/journal.pone.0015522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmitt I, Kaut O, Khazneh H, deBoni L, Ahmad A, Berg D, Klein C, Fröhlich H, Wüllner U (2015) l-Dopa increases α-synuclein DNA methylation in Parkinson’s disease patients in vivo and in vitro. Mov Disord 30(13):1794–1801. doi:https://doi.org/10.1002/mds.26319

    Article  CAS  PubMed  Google Scholar 

  21. Figge DA, Eskow Jaunarajs KL, Standaert DG (2016) Dynamic DNA methylation regulates levodopa-induced dyskinesia. J Neurosci 36(24):6514–6524. https://doi.org/10.1523/JNEUROSCI.0683-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang GG, Allis CD, Chi P (2007) Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol Med 13(9):363–372. https://doi.org/10.1016/j.molmed.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  23. Koch CM, Andrews RM, Flicek P, Dillon SC, Karaöz U, Clelland GK, Wilcox S, Beare DM, Fowler JC, Couttet PJGr (2007) The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res 17(6):691–707. https://doi.org/10.1101/gr.5704207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Latham JA, Dent SYR (2007) Cross-regulation of histone modifications. Nat Struct Mol Biol 14(11):1017–1024. doi:https://doi.org/10.1038/nsmb1307

    Article  CAS  PubMed  Google Scholar 

  25. Harrison IF, Dexter DT (2013) Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson’s disease? Pharmacol Ther 140(1):34–52. https://doi.org/10.1016/j.pharmthera.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  26. Bernstein B, Birney E, Dunham I, Green E, Gunter C, Snyder M, The ENCODE Project Consortium (2012) Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74

  27. Kontopoulos E, Parvin JD, Feany MB (2006) α-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 15(20):3012–3023. doi:https://doi.org/10.1093/hmg/ddl243

    Article  CAS  PubMed  Google Scholar 

  28. Vermunt Marit W, Reinink P, Korving J, de Bruijn E, Creyghton Paul M, Basak O, Geeven G, Toonen Pim W, Lansu N, Meunier C, van Heesch S, Clevers H, de Laat W, Cuppen E, Creyghton Menno P (2014) Large-scale identification of coregulated enhancer networks in the adult human brain. Cell Rep 9(2):767–779. https://doi.org/10.1016/j.celrep.2014.09.023

    Article  CAS  PubMed  Google Scholar 

  29. Choi H-K, Choi Y, Kang H, Lim E-j, Park S-Y, Lee H-S, Park J-M, Moon J, Kim Y-J, Choi I, Joe E-H, Choi K-C, Yoon H-G (2014) PINK1 positively regulates HDAC3 to suppress dopaminergic neuronal cell death. Hum Mol Genet 24(4):1127–1141. doi:https://doi.org/10.1093/hmg/ddu526

    Article  CAS  PubMed  Google Scholar 

  30. Choong C-J, Sasaki T, Hayakawa H, Yasuda T, Baba K, Hirata Y, Uesato S, Mochizuki H (2016) A novel histone deacetylase 1 and 2 isoform-specific inhibitor alleviates experimental Parkinson’s disease. Neurobiol Aging 37:103–116. https://doi.org/10.1016/j.neurobiolaging.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  31. Hegarty S, Sullivan A, O’Keeffe G (2016) The epigenome as a therapeutic target for Parkinson’s disease. Neural Regen Res 11:1735–1738

    Article  CAS  Google Scholar 

  32. Wei J-W, Huang K, Yang C, Kang C-S (2017) Non-coding RNAs as regulators in epigenetics. Oncol Rep 37(1):3–9

    Article  Google Scholar 

  33. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361. doi:https://doi.org/10.1016/j.tcb.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  34. Scheele C, Petrovic N, Faghihi MA, Lassmann T, Fredriksson K, Rooyackers O, Wahlestedt C, Good L, Timmons JA (2007) The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function. BMC Genomics 8(1):74. https://doi.org/10.1186/1471-2164-8-74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gokey NG, Srinivasan R, Lopez-Anido C, Krueger C, Svaren J (2012) Developmental regulation of MicroRNA expression in Schwann cells. Mol Cell Biol 32(2):558. https://doi.org/10.1128/MCB.06270-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220. https://doi.org/10.1126/science.1140481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martinat C, Bacci J-J, Leete T, Kim J, Vanti WB, Newman AH, Cha JH, Gether U, Wang H, Abeliovich A (2006) Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc Natl Acad Sci USA 103(8):2874. doi:https://doi.org/10.1073/pnas.0511153103

    Article  CAS  PubMed  Google Scholar 

  38. Junn E, Lee K-W, Jeong BS, Chan TW, Im J-Y, Mouradian MM (2009) Repression of α-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 106(31):13052–13057. doi:https://doi.org/10.1073/pnas.0906277106

    Article  PubMed  Google Scholar 

  39. Rodríguez-Blanco J, Martín V, García-Santos G, Herrera F, Casado-Zapico S, Antolín I, Rodriguez C (2012) Cooperative action of JNK and AKT/mTOR in 1-methyl-4-phenylpyridinium-induced autophagy of neuronal PC12 cells. J Neurosci 90(9):1850–1860. doi:https://doi.org/10.1002/jnr.23066

    Article  CAS  Google Scholar 

  40. Doxakis E (2010) Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153. J Biol Chem 285(17):12726–12734. https://doi.org/10.1074/jbc.M109.086827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thome AD, Harms AS, Volpicelli-Daley LA, Standaert DG (2016) microRNA-155 regulates alpha-synuclein-induced inflammatory responses in models of Parkinson disease. J Neurosci 36(8):2383–2390

    Article  CAS  Google Scholar 

  42. Nicholas AP, Lubin FD, Hallett PJ, Vattem P, Ravenscroft P, Bezard E, Zhou S, Fox SH, Brotchie JM, Sweatt JD, Standaert DG (2008) Striatal histone modifications in models of levodopa-induced dyskinesia. J Neurochem 106 106(1):486–494. doi:https://doi.org/10.1111/j.1471-4159.2008.05417.x

    Article  CAS  PubMed  Google Scholar 

  43. Games D, Valera E, Spencer B, Rockenstein E, Mante M, Adame A, Patrick C, Ubhi K, Nuber S, Sacayon P, Zago W, Seubert P, Barbour R, Schenk D, Masliah E (2014) Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 34(28):9441. https://doi.org/10.1523/JNEUROSCI.5314-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jian W, Wei X, Chen L, Wang Z, Sun Y, Zhu S, Lou H, Yan S, Li X, Zhou J, Zhang B (2017) Inhibition of HDAC6 increases acetylation of peroxiredoxin1/2 and ameliorates 6-OHDA induced dopaminergic injury. Neurosci Lett 658:114–120. doi:https://doi.org/10.1016/j.neulet.2017.08.029

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Z, Guo Z, Zhan Y, Li H, Wu S (2017) Role of histone acetylation in activation of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 pathway by manganese chloride. Toxicol Appl Pharmacol 336:94–100. doi:https://doi.org/10.1016/j.taap.2017.10.011

    Article  CAS  PubMed  Google Scholar 

  46. Song C, Kanthasamy A, Anantharam V, Sun F, Kanthasamy AG (2010) Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol Pharmacol 77(4):621. https://doi.org/10.1124/mol.109.062174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feng Y, Liu T, Dong S-Y, Guo Y-J, Jankovic J, Xu H, Wu Y-C (2015) Rotenone affects p53 transcriptional activity and apoptosis via targeting SIRT1 and H3K9 acetylation in SH-SY5Y cells. J Neurochem 134(4):668–676. doi:https://doi.org/10.1111/jnc.13172

    Article  CAS  PubMed  Google Scholar 

  48. Patel VP, Chu CT (2014) Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: Implications for Parkinson’s disease. Exp Neurol 257:170–181. doi:https://doi.org/10.1016/j.expneurol.2014.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Laurent RS, O’Brien LM, Ahmad ST (2013) Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience 246:382–390

    Article  Google Scholar 

  50. Yao L, Li W, She H, Dou J, Jia L, He Y, Yang Q, Zhu J, Cápiro NL, Walker DI (2012) Activation of transcription factor MEF2D by bis (3)-cognitin protects dopaminergic neurons and ameliorates Parkinsonian motor defects. J Biol Chem 287(41):34246–34255

    Article  CAS  Google Scholar 

  51. Gangisetty O, Murugan S (2016) Epigenetic modifications in neurological diseases: natural products as epigenetic modulators a treatment strategy. In: The benefits of natural products for neurodegenerative diseases. Springer, New York, pp 1–25

  52. Ganesan K, Xu B (2017) A critical review on polyphenols and health benefits of black soybeans. Nutrients 9(5):455

    Article  Google Scholar 

  53. Choi S-W, Friso S (2009) Nutrients and epigenetics. CRC Press, Boca Raton

    Book  Google Scholar 

  54. Arora I, Sharma M, Sun LY, Tollefsbol TO (2020) The epigenetic link between polyphenols, aging and age-related diseases. Genes 11(9):1094

    Article  CAS  Google Scholar 

  55. Kim J, Lee HJ, Lee KW (2010) Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem 112(6):1415–1430

    Article  CAS  Google Scholar 

  56. Carlos-Reyes Á, López-González JS, Meneses-Flores M, Gallardo-Rincón D, Ruíz-García E, Marchat LA, Astudillo-De La Vega H, Hernández de la Cruz ON, López-Camarillo C (2019) Dietary compounds as epigenetic modulating agents in cancer. Front Genet 10:79

    Article  CAS  Google Scholar 

  57. Zhu X, Li Q, Chang R, Yang D, Song Z, Guo Q, Huang C (2014) Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model. PLoS ONE 9(3):e91303

    Article  Google Scholar 

  58. Ogiwara H, Ui A, Shiotani B, Zou L, Yasui A, Kohno T (2013) Curcumin suppresses multiple DNA damage response pathways and has potency as a sensitizer to PARP inhibitor. Carcinogenesis 34(11):2486–2497

    Article  CAS  Google Scholar 

  59. Machado-Filho JA, Correia AO, Montenegro ABA, Nobre MEP, Cerqueira GS, Neves KRT, da Graça Naffah-Mazzacoratti M, Cavalheiro EA, de Castro-Brito GA, de Barros-Viana GS (2014) Caffeine neuroprotective effects on 6-OHDA-lesioned rats are mediated by several factors, including pro-inflammatory cytokines and histone deacetylase inhibitions. Behav Brain Res 264:116–125

    Article  CAS  Google Scholar 

  60. Gagliano Sarah A, Ptak C, Mak Denise YF, Shamsi M, Oh G, Knight J, Boutros Paul C, Petronis A (2016) Allele-skewed DNA modification in the brain: relevance to a schizophrenia GWAS. Am J Hum Genet 98(5):956–962. https://doi.org/10.1016/j.ajhg.2016.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jakubowski JL, Labrie V (2017) Epigenetic biomarkers for Parkinson’s disease: from diagnostics to therapeutics. J Parkinson Dis 7:1–12. https://doi.org/10.3233/JPD-160914

    Article  Google Scholar 

  62. Goers J, Manning-Bog AB, McCormack AL, Millett IS, Doniach S, Di Monte DA, Uversky VN, Fink AL (2003) Nuclear localization of α-synuclein and its interaction with histones. Biochemistry 42(28):8465–8471

    Article  CAS  Google Scholar 

  63. Jin H, Kanthasamy A, Ghosh A, Yang Y, Anantharam V, Kanthasamy AG (2011) α-Synuclein negatively regulates protein kinase Cδ expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity. J Neurosci 31(6):2035–2051

    Article  CAS  Google Scholar 

  64. Siddiqui A, Chinta SJ, Mallajosyula JK, Rajagopolan S, Hanson I, Rane A, Melov S, Andersen JK (2012) Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson’s disease. Free Radic Biol Med 53(4):993–1003

    Article  CAS  Google Scholar 

  65. Junn E, Lee K-W, Jeong BS, Chan TW, Im J-Y, Mouradian MM (2009) Repression of α-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 106(31):13052–13057

    Article  CAS  Google Scholar 

  66. Miñones-Moyano E, Porta S, Escaramís G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Martí E (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20(15):3067–3078

    Article  Google Scholar 

  67. Gehrke S, Imai Y, Sokol N, Lu B (2010) Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466(7306):637–641

    Article  CAS  Google Scholar 

  68. Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, Adame A, Rockenstein E, Masliah E (2011) α-Synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem 286(11):9031–9037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ASR, HB, SSS, WZ, HD, RS, and PK are sincerely thankful to BHU, DBT, ICMR, CSIR India, for their respective fellowship. The present study was not supported by any funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

ASR planned the work and drafted the manuscript; HB, SSS, WZ, HD, RS and PKK helped in the manuscript preparation, designed and drawn the figures; and SPS guided throughout the manuscript.

Corresponding author

Correspondence to Surya Pratap Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, A.S., Birla, H., Singh, S.S. et al. Epigenetic Modulation in Parkinson’s Disease and Potential Treatment Therapies. Neurochem Res 46, 1618–1626 (2021). https://doi.org/10.1007/s11064-021-03334-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03334-w

Keywords

Navigation