Skip to main content
Log in

Forty Four Years With Baruch Kanner and The Chloride Ion

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Baruch Kanner and this author have had parallel careers investigating neurotransmitter transporters. At multiple times during their careers, they have found themselves collaborating or competing, but always learning from each other. This commentary elaborates on the interactions between the Kanner and Rudnick laboratories, with a focus on transporters in the Neurotransmitter: Sodium Symporter (NSS) family of amino acid and amine transporters. A key focus of these interactions is the mechanism by which chloride ions activate and drive transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rudnick G (1977) Active transport of 5-hydroxytryptamine by plasma membrane vesicles isolated from human blood platelets. J Biol Chem 252:2170–2174

    CAS  PubMed  Google Scholar 

  2. Rudnick G, Nelson PJ (1978) Platelet 5-hydroxytryptamine transport an electroneutral mechanism coupled to potassium. Biochemistry 17:4739–4742

    CAS  PubMed  Google Scholar 

  3. Kanner BI (1978) Active transport of g-aminobutyric acid by membrane vesicles isolated from rat brain. Biochemistry 17:1207–1211

    CAS  PubMed  Google Scholar 

  4. Kanner BI (1978) Solubilisation and reconstitution of the gamma-aminobutyric acid transporter from rat brain. FEBS Lett 89:47–50

    CAS  PubMed  Google Scholar 

  5. Kanner BI, Sharon I (1978) Active transport of L-glutamate by membrane vesicles isolated from rat brain. Biochemistry 17:3949–3953

    CAS  PubMed  Google Scholar 

  6. Kanner BI, Sharon I (1978) Solubilization and reconstitution of the L-glutamic acid transporter from rat brain. FEBS Lett 94:245–248

    CAS  PubMed  Google Scholar 

  7. Radian R, Kanner BI (1983) Stoichiometry of sodium- and chloride-coupled gamma-aminobutyric acid transport by synaptic plasma membrane vesicles isolated from rat brain. Biochemistry 22:1236–1241

    CAS  PubMed  Google Scholar 

  8. Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503:85–90

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Coleman JA, Green EM, Gouaux E (2016) X-ray structures and mechanism of the human serotonin transporter. Nature 532:334–339

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Talvenheimo J, Fishkes H, Nelson PJ, Rudnick G (1983) The serotonin transporter-imipramine “receptor”: different sodium requirements for imipramine binding and serotonin translocation. J Biol Chem 258:6115–6119

    CAS  PubMed  Google Scholar 

  11. Radian R, Bendahan A, Kanner BI (1986) Purification and identification of the functional sodium and chloride coupled g- aminobutyric acid transport glycoprotein from rat brain. J Biol Chem 261:15437–15441

    CAS  PubMed  Google Scholar 

  12. Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel M, Davidson N, Lester H, Kanner BI (1990) Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306

    CAS  PubMed  Google Scholar 

  13. Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354

    CAS  PubMed  Google Scholar 

  14. Blakely R, Berson H, Fremeau R, Caron M, Peek M, Prince H, Bradely C (1991) Cloning and expression of a functional serotonin transporter from rat brain. Nature 354:66–70

    CAS  PubMed  Google Scholar 

  15. Hoffman BJ, Mezey E, Brownstein MJ (1991) Cloning of a serotonin transporter affected by antidepressants. Science 254:579–580

    CAS  PubMed  Google Scholar 

  16. Shimada S, Kitayama S, Lin C, Patel A, Nanthakumar E, Gregor P, Kuhar M, Uhl G (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254:576–578

    CAS  PubMed  Google Scholar 

  17. Usdin T, Mezey E, Chen C, Brownstein M, Hoffman B (1991) Cloning of the cocaine-sensitive bovine dopamine transporter. Proc Nat Acad Sci USA 88:11168–11171

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Guastella J, Brecha N, Weigmann C, Lester H, Davidson N (1992) Cloning, expression, and localization of a rat brain high-affinity glycine transporter. Proc Natl Acad Sci USA 89:7189–7193

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu Q-R, Nelson H, Mandiyan S, Lopez-Corcuera B, Nelson N (1992) Cloning and expression of a glycine transporter from mouse brain. FEBS Lett 305:110–114

    CAS  PubMed  Google Scholar 

  20. Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI (1992) Cloning and expression of a rat brain L-glutamate transporter. Nature 360:464–467

    CAS  PubMed  Google Scholar 

  21. Blakely RD, Clark JA, Rudnick G, Amara SG (1991) Vaccinia-T7 RNA polymerase expression system: evaluation for the expression cloning of plasma membrane transporters. Anal Biochem 194:302–308

    CAS  PubMed  Google Scholar 

  22. Keynan S, Suh YJ, Kanner BI, Rudnick G (1992) Expression of a cloned gamma-aminobutyric acid transporter in mammalian cells. Biochemistry 31:1974–1979

    CAS  PubMed  Google Scholar 

  23. Kanner B, Bendahan A, Pantanowitz S, Su H (1994) The number of amino acid residues in hydrophilic loops connecting transmembrane domains of the GABA transporter GAT-1 is critical for its function. FEBS Lett 356:191–194

    CAS  PubMed  Google Scholar 

  24. Bennett ER, Kanner BI (1997) The membrane topology of GAT-1, a (Na++Cl-)-coupled gamma-aminobutyric acid transporter from rat brain. J Biol Chem 272:1203–1210

    CAS  PubMed  Google Scholar 

  25. Chen JG, Liu-Chen S, Rudnick G (1998) Determination of external loop topology in the serotonin transporter by site-directed chemical labeling. J Biol Chem 273:12675–12681

    CAS  PubMed  Google Scholar 

  26. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437:215–223

    CAS  PubMed  Google Scholar 

  27. Shahsavar A, Stohler P, Bourenkov G, Zimmermann I, Siegrist M, Guba W, Pinard E, Sinning S, Seeger MA, Schneider TR, Dawson RJP, Nissen P (2021) Structural insights into the inhibition of glycine reuptake. Nature. https://doi.org/10.1038/s41586-021-03274-z

    Article  PubMed  Google Scholar 

  28. Brocke L, Bendahan A, Grunewald M, Kanner BI (2002) Proximity of two oppositely oriented reentrant loops in the glutamate transporter GLT-1 identified by paired cysteine mutagenesis. J Biol Chem 277:3985–3992

    CAS  PubMed  Google Scholar 

  29. Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    CAS  PubMed  Google Scholar 

  30. Rudnick G, Sandtner W (2019) Serotonin transport in the 21st century. J Gen Physiol 151:1248–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Forrest LR, Tavoulari S, Zhang Y-W, Rudnick G, Honig B (2007) Identification of a chloride ion binding site in Na+/Cl- -dependent transporters. Proc Natl Acad Sci USA 104:12761–12766

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zomot E, Bendahan A, Quick M, Zhao Y, Javitch JA, Kanner BI (2007) Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449:726–730

    CAS  PubMed  Google Scholar 

  33. Kantcheva AK, Quick M, Shi L, Winther A-ML, Stolzenberg S, Weinstein H, Javitch JA, Nissen P (2013) Chloride binding site of neurotransmitter sodium symporters. Proc Natl Acad Sci USA 110:8489–8494

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tavoulari S, Rizwan AN, Forrest LR, Rudnick G (2011) Reconstructing a chloride-binding site in a bacterial neurotransmitter transporter homologue. J Biol Chem 286:2834–2842

    CAS  PubMed  Google Scholar 

  35. Krishnamurthy H, Gouaux E (2012) X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481:469–474

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Forrest LR, Zhang YW, Jacobs MT, Gesmonde J, Xie L, Honig BH, Rudnick G (2008) Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci USA 105:10338–10343

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Quick M, Yano H, Goldberg NR, Duan L, Beuming T, Shi L, Weinstein H, Javitch JA (2006) State-dependent conformations of the translocation pathway in the tyrosine transporter Tyt1, a novel neurotransmitter:sodium symporter from Fusobacterium nucleatum. J Biol Chem 281:26444–26454

    CAS  PubMed  Google Scholar 

  38. Tavoulari S, Margheritis E, Nagarajan A, DeWitt DC, Zhang YW, Rosado E, Ravera S, Rhoades E, Forrest LR, Rudnick G (2016) Two Na+ sites control conformational change in a neurotransmitter transporter homolog. J Biol Chem 291:1456–1471

    CAS  PubMed  Google Scholar 

  39. Zhang YW, Tavoulari S, Sinning S, Aleksandrova AA, Forrest LR, Rudnick G (2018) Structural elements required for coupling ion and substrate transport in the neurotransmitter transporter homolog LeuT. Proc Natl Acad Sci USA 115:E8854–E8862

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ben-Yona A, Bendahan A, Kanner BI (2011) A glutamine residue conserved in the neurotransmitter:sodium: symporters is essential for the interaction of chloride with the GABA transporter GAT-1. J Biol Chem 286:2826–2833

    CAS  PubMed  Google Scholar 

  41. Roux MJ, Supplisson S (2000) Neuronal and glial glycine transporters have different stoichiometries. Neuron 25:373–383

    CAS  PubMed  Google Scholar 

  42. Zhang Y-W, Uchendu S, Leone V, Bradshaw RT, Sangwac N, Forrest LR, Rudnick G (2021) Chloride-dependent conformational changes in the GlyT1 glycine transporter. Proc Natl Acad Sci USA 118:e2017431118

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hellsberg E, Ecker GF, Stary-Weinzinger A, Forrest LR (2019) A structural model of the human serotonin transporter in an outward-occluded state. PLoS ONE 14:e0217377

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The author was supported by NIH Grant No. NS102277.

Author information

Authors and Affiliations

Authors

Contributions

I wrote this article.

Corresponding author

Correspondence to Gary Rudnick.

Ethics declarations

Conflict of interest

The author declare that he has no conflict of interest.

Additional information

Special Issue: In Honor of Baruch Kanner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudnick, G. Forty Four Years With Baruch Kanner and The Chloride Ion. Neurochem Res 47, 3–8 (2022). https://doi.org/10.1007/s11064-021-03330-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03330-0

Keywords

Navigation