Skip to main content
Log in

Sensing and Regulating Synaptic Activity by Astrocytes at Tripartite Synapse

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes are recognized as more important cells than historically thought in synaptic function through the reciprocal exchange of signaling with the neuronal synaptic elements. The idea that astrocytes are active elements in synaptic physiology is conceptualized in the Tripartite Synapse concept. This review article presents and discusses recent representative examples that highlight the heterogeneity of signaling in tripartite synapse function and its consequences on neural network function and animal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  2. Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E et al (2011) Role of astrocytes in brain function and disease. Toxicol Pathol 39:115–123

    Article  PubMed  Google Scholar 

  3. Vasile F, Dossi E, Rouach N (2017) Human astrocytes: structure and functions in the healthy brain. Brain Struct Funct 222:2017–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63

    Article  CAS  PubMed  Google Scholar 

  5. Perea G, Araque A (2010) GLIA modulates synaptic transmission. Brain Res Rev 63:93–102

    Article  CAS  PubMed  Google Scholar 

  6. Santello M, Calì C, Bezzi P (2012) Gliotransmission and the tripartite synapse. Adv Exp Med Biol 970:307–331. https://doi.org/10.1007/978-3-7091-0932-8_14

    Article  CAS  Google Scholar 

  7. Araque A, Carmignoto G, Haydon PG et al (2014) Gliotransmitters travel in time and space. Neuron 81:728–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Savtchouk I, Volterra A (2018) Gliotransmission: beyond black-and-white. J Neurosci 38:14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Durkee CA, Araque A (2019) Diversity and specificity of astrocyte–neuron communication. Neuroscience 396:73–78

    Article  CAS  PubMed  Google Scholar 

  10. Corkrum M, Rothwell PE, Thomas MJ et al (2019) Opioid-mediated astrocyte–neuron signaling in the nucleus accumbens. Cells 8:586

    Article  CAS  PubMed Central  Google Scholar 

  11. Parpura V, Verkhratsky A (2013) Astroglial amino acid-based transmitter receptors. Amino Acids 44:1151–1158

    Article  CAS  PubMed  Google Scholar 

  12. Verkhratsky A, Rodríguez JJ, Parpura V (2012) Neurotransmitters and integration in neuronal-astroglial networks. Neurochem Res 37:2326–2338

    Article  CAS  PubMed  Google Scholar 

  13. Perea G, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25:2192–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zorec R, Araque A, Carmignoto G et al (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro. https://doi.org/10.1042/AN20110061

    Article  PubMed  PubMed Central  Google Scholar 

  15. Khakh BS, McCarthy KD (2015) Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb Perspect Biol 7:a020404

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shigetomi E, Patel S, Khakh BS (2016) Probing the complexities of astrocyte calcium signaling. Trends Cell Biol 26:300–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guerra-Gomes S, Sousa N, Pinto L, Oliveira JF (2018) Functional roles of astrocyte calcium elevations: from synapses to behavior. Front Cell Neurosci 11:427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Malarkey EB, Ni Y, Parpura V (2008) Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56:821–835

    Article  PubMed  Google Scholar 

  19. Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J Neurosci 20:1800–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Agarwal A, Wu PH, Hughes EG et al (2017) Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93:587-605.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mariotti L, Losi G, Sessolo M et al (2016) The inhibitory neurotransmitter GABA evokes long-lasting Ca2+ oscillations in cortical astrocytes. Glia 64:363–373

    Article  PubMed  Google Scholar 

  22. Sharp AH, Nucifora FC, Blondel O et al (1999) Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol 406:207–220

    Article  CAS  PubMed  Google Scholar 

  23. Holtzclaw LA, Pandhit S, Bare DJ et al (2002) Astrocytes in adult rat brain express type 2 inositol 1,4,5-trisphosphate receptors. Glia 39:69–84

    Article  PubMed  Google Scholar 

  24. Petravicz J, Fiacco TA, McCarthy KD (2008) Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J Neurosci 28:4967–4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Srinivasan R, Huang BS, Venugopal S et al (2015) Ca2+ signaling in astrocytes from Ip3r2-/- mice in brain slices and during startle responses in vivo. Nat Neurosci 18:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stobart JL, Ferrari KD, Barrett MJP et al (2018) Cortical circuit activity evokes rapid astrocyte calcium signals on a similar timescale to neurons. Neuron 98:726-735.e4

    Article  CAS  PubMed  Google Scholar 

  27. Reyes RC, Parpura V (2008) Mitochondria modulate Ca2+-dependent glutamate release from rat cortical astrocytes. J Neurosci 28:9682–9691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lalo U (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamilton N, Vayro S, Kirchhoff F et al (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56:734–749

    Article  PubMed  Google Scholar 

  30. Palygin O, Lalo U, Pankratov Y (2011) Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br J Pharmacol 163:1755–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lalo U, Bogdanov A, Pankratov Y (2019) Age- and experience-related plasticity of ATP-mediated signaling in the neocortex. Front Cell Neurosci 13:242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Durkee CA, Covelo A, Lines J et al (2019) G i/o protein-coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia 67:1076–1093

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ni Y, Malarkey EB, Parpura V (2007) Vesicular release of glutamate mediates bidirectional signaling between astrocytes and neurons. J Neurochem 103:1273–1284

    Article  CAS  PubMed  Google Scholar 

  34. Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92

    Article  CAS  PubMed  Google Scholar 

  35. Agulhon C, Petravicz J, McMullen AB et al (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59:932–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-dependent glutamate release from astrocytes. J Neurosci 20:666–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bezzi P, Gundersen V, Galbete JL et al (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    Article  CAS  PubMed  Google Scholar 

  38. Schwarz Y, Zhao N, Kirchhoff F, Bruns D (2017) Astrocytes control synaptic strength by two distinct v-SNARE-dependent release pathways. Nat Neurosci 20:1529–1539

    Article  CAS  PubMed  Google Scholar 

  39. Ni Y, Parpura V (2009) Dual regulation of Ca 2+ -dependent glutamate release from astrocytes: vesicular glutamate transporters and cytosolic glutamate levels. Glia 57:1296–1305

    Article  PubMed  PubMed Central  Google Scholar 

  40. Grubišić V, Parpura V (2017) Two modes of enteric gliotransmission differentially affect gut physiology. Glia 65:699–711

    Article  PubMed  PubMed Central  Google Scholar 

  41. Montana V, Ni Y, Sunjara V et al (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Henneberger C, Papouin T, Oliet SHR, Rusakov DA (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Covelo A, Araque A (2018) Neuronal activity determines distinct gliotransmitter release from a single astrocyte. Elife 7:e32237

    Article  PubMed  PubMed Central  Google Scholar 

  44. Serrano A (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26:5370–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pérez-Rodríguez M, Arroyo-García LE, Prius-Mengual J et al (2019) Adenosine receptor-mediated developmental loss of spike timing-dependent depression in the hippocampus. Cereb Cortex 29:3266–3281

    Article  PubMed  Google Scholar 

  46. Corkrum M, Covelo A, Lines J et al (2020) Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron 105:1036-1047.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Parpura V, Basarsky TA, Liu F et al (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    Article  CAS  PubMed  Google Scholar 

  48. Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97:8629–8634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692

    Article  CAS  PubMed  Google Scholar 

  50. Perea G, Gómez R, Mederos S et al (2016) Activity-dependent switch of gabaergic inhibition into glutamatergic excitation in astrocyte-neuron networks. Elife 5:e20362

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jourdain P, Bergersen LH, Bhaukaurally K et al (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10:331–339

    Article  CAS  PubMed  Google Scholar 

  52. Navarrete M, Araque A (2010) Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68:113–126

    Article  CAS  PubMed  Google Scholar 

  53. Min R, Nevian T (2012) Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat Neurosci 15:746–753

    Article  CAS  PubMed  Google Scholar 

  54. Martín R, Bajo-Grañeras R, Moratalla R et al (2015) Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349:730–734

    Article  PubMed  CAS  Google Scholar 

  55. D’Ascenzo M, Fellin T, Terunuma M et al (2007) mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci USA 104:1995–2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gómez-Gonzalo M, Navarrete M, Perea G et al (2015) Endocannabinoids induce lateral long-term potentiation of transmitter release by stimulation of gliotransmission. Cereb Cortex 25:3699–3712

    Article  PubMed  Google Scholar 

  57. Navarrete M, Perea G, de Sevilla DF et al (2012) Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 10:e1001259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Takata N, Mishima T, Hisatsune C et al (2011) Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31:18155–18165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Robin LM, Oliveira da Cruz JF, Langlais VC et al (2018) Astroglial CB1 receptors determine synaptic d-serine availability to enable recognition memory. Neuron 98:935-944.e5

    Article  CAS  PubMed  Google Scholar 

  60. Shigetomi E, Jackson-Weaver O, Huckstepp RT et al (2013) TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive d-serine release. J Neurosci 33:10143–10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Papouin T, Henneberger C, Rusakov DA, Oliet SHR (2017) Astroglial versus neuronal d-serine: fact checking. Trends Neurosci 40:517–520

    Article  CAS  PubMed  Google Scholar 

  62. Andersson M, Blomstrand F, Hanse E (2007) Astrocytes play a critical role in transient heterosynaptic depression in the rat hippocampal CA1 region. J Physiol 585:843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Perea G, Yang A, Boyden ES, Sur M (2014) Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat Commun 5:3262

    Article  PubMed  CAS  Google Scholar 

  64. Martin-Fernandez M, Jamison S, Robin LM et al (2017) Synapse-specific astrocyte gating of amygdala-related behavior. Nat Neurosci 20:1540–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lalo U, Palygin O, Rasooli-Nejad S et al (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12:e1001747

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pougnet JT, Toulme E, Martinez A et al (2014) ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons. Neuron 83:417–430

    Article  CAS  PubMed  Google Scholar 

  67. Lalo U, Palygin O, Verkhratsky A et al (2016) ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci Rep 6:33609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Falcón-Moya R, Pérez-Rodríguez M, Prius-Mengual J et al (2020) Astrocyte-mediated switch in spike timing-dependent plasticity during hippocampal development. Nat Commun 11:4388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Gómez-Gonzalo M, Martin-Fernandez M, Martínez-Murillo R et al (2017) Neuron–astrocyte signaling is preserved in the aging brain. Glia 65:569–580

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lalo U, Palygin O, North RA et al (2011) Age-dependent remodelling of ionotropic signalling in cortical astroglia. Aging Cell 10:392–402

    Article  CAS  PubMed  Google Scholar 

  71. Lalo U, Bogdanov A, Pankratov Y (2018) Diversity of astroglial effects on aging- and experience-related cortical metaplasticity. Front Mol Neurosci 11:239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Oliveira JF, Sardinha VM, Guerra-Gomes S et al (2015) Do stars govern our actions? Astrocyte involvement in rodent behavior. Trends Neurosci 38:535–549

    Article  CAS  PubMed  Google Scholar 

  73. Kofuji P, Araque A (2020) G-protein-coupled receptors in astrocyte-neuron communication. Neuroscience S0306–4522:30177–30179

    Google Scholar 

  74. Han J, Kesner P, Metna-Laurent M et al (2012) Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 148:1039–1050

    Article  CAS  PubMed  Google Scholar 

  75. Paukert M, Agarwal A, Cha J et al (2014) Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82:1263–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fellin T, Halassa MM, Terunuma M et al (2009) Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proc Natl Acad Sci USA 106:15037–15042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Poskanzer KE, Yuste R (2011) Astrocytic regulation of cortical UP states. Proc Natl Acad Sci USA 108:18453–18458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee HS, Ghetti A, Pinto-Duarte A et al (2014) Astrocytes contribute to gamma oscillations and recognition memory. Proc Natl Acad Sci USA 111:E3343–E3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Poskanzer KE, Yuste R (2016) Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci USA 113:E2675–E2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sardinha VM, Guerra-Gomes S, Caetano I et al (2017) Astrocytic signaling supports hippocampal–prefrontal theta synchronization and cognitive function. Glia 65:1944–1960

    Article  PubMed  Google Scholar 

  81. Lines J, Martin ED, Kofuji P et al (2020) Astrocytes modulate sensory-evoked neuronal network activity. Nat Commun 11:3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mederos S, Sánchez-Puelles C, Esparza J et al (2021) GABAergic signaling to astrocytes in the prefrontal cortex sustains goal-directed behaviors. Nat Neurosci 24:82–92

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Institute of Neurological Disorders and Stroke [Grant No. R01NS097312] and National Institute on Drug Abuse [Grant No. R01DA048822]. National Institute of Mental Health [Grant No R01MH119355].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Araque.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Prof. Vladimir Parpura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noriega-Prieto, J.A., Araque, A. Sensing and Regulating Synaptic Activity by Astrocytes at Tripartite Synapse. Neurochem Res 46, 2580–2585 (2021). https://doi.org/10.1007/s11064-021-03317-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03317-x

Keywords

Navigation