Skip to main content
Log in

Exploring Sonic Hedgehog Cell Signaling in Neurogenesis: Its Potential Role in Depressive Behavior

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Depression is the most prevalent form of neuropsychiatric disorder affecting all age groups globally. As per the estimation of the World Health Organization (WHO), depression will develop into the foremost reason for disability globally by the year 2030. The primary neurobiological mechanism implicated in depression remains ambiguous; however, dysregulation of molecular and signaling transductions results in depressive disorders. Several theories have been developed to explain the pathogenesis of depression, however, none of them completely explained all aspects of depressive-pathogenesis. In the current review, we aimed to explore the role of the sonic hedgehog (Shh) signaling pathway in the development of the depressive disorder and its potential as the therapeutic target. Shh signaling has a crucial function in neurogenesis and neural tube patterning during the development of the central nervous system (CNS). Shh signaling performs a basic function in embryogenesis and hippocampal neurogenesis. Moreover, antidepressants are also known to enhance neurogenesis in the hippocampus, which further suggests the potential of Shh signaling. Furthermore, there is decreased expression of a glioma-associated oncogene (Gli1) and Smoothened (Smo) in depression. Moreover, antidepressants also regulate brain-derived neurotrophic factor (BDNF) and wingless protein (Wnt) signaling, therefore, Shh may be implicated in the pathogenesis of the depressive disorder. Deregulation of Shh signaling in CNS results in neurological disorders such as depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jonsson B et al (2011) The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21:655–679

    CAS  PubMed  Google Scholar 

  2. Hidaka BH (2012) Depression as a disease of modernity: explanations for increasing prevalence. J Affect Disord 140:205–214

    PubMed  PubMed Central  Google Scholar 

  3. Cui R (2015) Editorial: a systematic review of depression. Curr Neuropharmacol 13:480

    CAS  PubMed  Google Scholar 

  4. Paunio T, Korhonen T, Hublin C, Partinen M, Koskenvuo K, Koskenvuo M et al (2015) Poor sleep predicts symptoms of depression and disability retirement due to depression. J Affect Disord 172:381–389

    PubMed  Google Scholar 

  5. Thornicroft G, Chatterji S, Evans-Lacko S, Gruber M, Sampson N, Aguilar-Gaxiola S et al (2017) Under treatment of people with major depressive disorder in 21 countries. Br J Psychiatry 210:119–124

    PubMed  PubMed Central  Google Scholar 

  6. Morilak DA, Frazer A (2004) Antidepressants and brain monoaminergic systems: a dimensional approach to understanding their behavioural effects in depression and anxiety disorders. Int J Neuropsychopharmacol 7:193–218

    CAS  PubMed  Google Scholar 

  7. Voleti B, Duman RS (2012) The roles of neurotrophic factor and Wnt signaling in depression. Clin Pharmacol Ther 91:333–338

    CAS  PubMed  Google Scholar 

  8. Tayyab M, Shahi MH, Farheen S, Mariyath MPM, Khanam N, Castresana JS et al (2018) Sonic hedgehog, Wnt, and brain-derived neurotrophic factor cell signaling pathway crosstalk: potential therapy for depression. J Neurosci Res 96:53–62

    CAS  PubMed  Google Scholar 

  9. Chaudhury D, Liu H, Han MH (2015) Neuronal correlates of depression. Cell Mol Life Sci 72:4825–4848

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Holtzheimer PE, Mayberg HS (2010) Deep brain stimulation for treatment-resistant depression. Am J Psychiatry 167:1437–1444

    PubMed  PubMed Central  Google Scholar 

  11. Castren E, Rantamaki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Dev Neurobiol 70:289–297

    CAS  PubMed  Google Scholar 

  12. Briscoe J, Small S (2015) Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142:3996–4009

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Matise MP, Wang H (2011) Sonic hedgehog signaling in the developing CNS where it has been and where it is going. Curr Top Dev Biol 97:75–117

    CAS  PubMed  Google Scholar 

  14. Patel SS, Tomar S, Sharma D, Mahindroo N, Udayabanu M (2017) Targeting sonic hedgehog signaling in neurological disorders. Neurosci Biobehav Rev 74:76–97

    PubMed  Google Scholar 

  15. Aikin R, Cervantes A, D’Angelo G, Ruel L, Lacas-Gervais S, Schaub S et al (2012) A genome-wide RNAi screen identifies regulators of cholesterol-modified hedgehog secretion in Drosophila. PLoS ONE 7:

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Tukachinsky H, Huang CH, Jao C, Chu YR, Tang HY et al (2011) Processing and turnover of the Hedgehog protein in the endoplasmic reticulum. J Cell Biol 192:825–838

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohlig S, Pickhinke U, Sirko S, Bandari S, Hoffmann D, Dreier R et al (2012) An emerging role of sonic hedgehog shedding as a modulator of heparan sulfate interactions. J Biol Chem 287:43708–43719

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie W, Ng DT (2010) ERAD substrate recognition in budding yeast. Semin Cell Dev Biol 21:533–539

    CAS  PubMed  Google Scholar 

  19. Huang CH, Hsiao HT, Chu YR, Ye Y, Chen X (2013) Derlin2 protein facilitates HRD1-mediated retro-translocation of sonic hedgehog at the endoplasmic reticulum. J Biol Chem 288:25330–25339

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Buglino JA, Resh MD (2012) Palmitoylation of Hedgehog proteins. Vitam Horm 88:229–252

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gallet A (2011) Hedgehog morphogen: from secretion to reception. Trends Cell Biol 21:238–246

    CAS  PubMed  Google Scholar 

  22. Cohen MM Jr (2010) Hedgehog signaling update. Am J Med Genet A 152A:1875–1914

    CAS  PubMed  Google Scholar 

  23. Tukachinsky H, Kuzmickas RP, Jao CY, Liu J, Salic A (2012) Dispatched and scube mediate the efficient secretion of the cholesterol-modified hedgehog ligand. Cell Rep 2:308–320

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Xavier GM, Panousopoulos L, Cobourne MT (2013) Scube3 is expressed in multiple tissues during development but is dispensable for embryonic survival in the mouse. PLoS ONE 8:

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Creanga A, Glenn TD, Mann RK, Saunders AM, Talbot WS, Beachy PA (2012) Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form. Genes Dev 26:1312–1325

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Grzelak CA, Martelotto LG, Sigglekow ND, Patkunanathan B, Ajami K, Calabro SR et al (2014) The intrahepatic signalling niche of hedgehog is defined by primary cilia positive cells during chronic liver injury. J Hepatol 60:143–151

    CAS  PubMed  Google Scholar 

  27. Ruat M, Roudaut H, Ferent J, Traiffort E (2012) Hedgehog trafficking, cilia and brain functions. Differentiation 83:S97–S104

    CAS  PubMed  Google Scholar 

  28. Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11:331–344

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mastronardi FG, Dimitroulakos J, Kamel-Reid S, Manoukian AS (2000) Co-localization of patched and activated sonic hedgehog to lyso-somes in neurons. NeuroReport 11:581–585

    CAS  PubMed  Google Scholar 

  30. Rubin LL, de Sauvage FJ (2006) Targeting the hedgehog pathway in cancer. Nat Rev Drug Discov 5:1026–1033

    CAS  PubMed  Google Scholar 

  31. Pathi S, Pagan-Westphal S, Baker DP, Garber EA, Rayhorn P, Bumcrot D et al (2001) Comparative biological responses to human sonic, indian, and desert hedgehog. Mech Dev 106:107–117

    CAS  PubMed  Google Scholar 

  32. Johnson RL, Scott MP (1998) New players and puzzles in the hedgehog signaling pathway. Curr Opin Genet Dev 8:450–456

    CAS  PubMed  Google Scholar 

  33. Mann RK, Beachy PA (2004) Novel lipid modifications of secreted protein signals. Annu Rev Biochem 73:891–923

    CAS  PubMed  Google Scholar 

  34. Zaphiropoulos PG, Unden AB, Rahnama F, Hollingsworth RE, Toftgard R (1999) PTCH2, a novel human patched gene, undergoing alter-native splicing and up-regulated in basal cell carcinomas. Cancer Res 59:787–792

    CAS  PubMed  Google Scholar 

  35. Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C et al (1996) The role of the human homo-logue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 14:78–81

    CAS  PubMed  Google Scholar 

  36. Marigo V, Tabin CJ (1996) Regulation of patched by sonic hedge-hog in the developing neural tube. Proc Natl Acad Sci USA 93:9346–9351

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ingham PW (2000) How cholesterol modulates the signal. Curr Biol 10:R180–R183

    CAS  PubMed  Google Scholar 

  38. Ingham PW, Taylor AM, Nakano Y (1991) Role of the Drosophila patched gene in positional signalling. Nature 353:184–187

    CAS  PubMed  Google Scholar 

  39. Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ (1996) Biochemical evidence that patched is the hedgehog receptor. Nature 384:176–179

    CAS  PubMed  Google Scholar 

  40. Johnson RL, Milenkovic L, Scott MP (2000) In vivo functions of the patched protein: Requirement of the C terminus for target gene inactivation but not hedgehog sequestration. Mol Cell 6:467–478

    CAS  PubMed  Google Scholar 

  41. Taylor AM, Nakano Y, Mohler J, Ingham PW (1993) Contrasting distributions of patched and hedgehog proteins in the drosophila embryo. Mech Dev 42:89–96

    CAS  PubMed  Google Scholar 

  42. Chen Y, Struhl G (1996) Dual roles for patched in sequestering and trans-ducing hedgehog. Cell 87:553–563

    CAS  PubMed  Google Scholar 

  43. Denef N, Neubüser D, Perez L, Cohen SM (2000) Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102:521–531

    CAS  PubMed  Google Scholar 

  44. Bhat KM, Schedl P (1997) Requirement for engrailed and invected genes reveals novel regulatory interactions between engrailed/invected, patched, gooseberry and wingless during Drosophila neurogenesis. Development 124:1675–1688

    CAS  PubMed  Google Scholar 

  45. Ramirez-Weber FA, Casso DJ, Aza-Blanc P, Tabata T, Kornberg TB (2000) Hedgehog signal transduction in the posterior compartment of the Drosophila wing imaginal disc. Mol Cell 6:479–485

    CAS  PubMed  Google Scholar 

  46. Alcedo J, Ayzenzon M, Von Ohlen T, Noll M, Hooper JE (1996) The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86:221–232

    CAS  PubMed  Google Scholar 

  47. Murone M, Rosenthal A, de Sauvage FJ (1999) Hedgehog signal transduction: from flies to vertebrates. Exp Cell Res 253:25–33

    CAS  PubMed  Google Scholar 

  48. Taipale J, Cooper MK, Maiti T, Beachy PA (2002) Patched acts cat-alytically to suppress the activity of smoothened. Nature 418:892–897

    CAS  PubMed  Google Scholar 

  49. Kim J, Hsia EY, Brigui A, Plessis A, Beachy PA, Zheng X et al (2015) The role of ciliary trafficking in hedgehog receptor signaling. Sci Signal 8:ra55

    PubMed  PubMed Central  Google Scholar 

  50. Corcoran RB, Scott MP (2006) Oxysterols stimulate sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci USA 103:8408–8413

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch MP et al (2006) Repression of smoothened by patched-de-pendent (pro-)vitamin D3 secretion. PLoS Biol 4:e232

    PubMed  PubMed Central  Google Scholar 

  52. Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O’Brien SJ et al (1987) Identification of an amplified, highly expressed gene in a human glioma. Science 236:70–73

    CAS  PubMed  Google Scholar 

  53. Hui CC, Slusarski D, Platt KA, Holmgren R, Joyner AL (1994) Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, gli, gli-2, and gli-3, in ectoderm-and meso-derm-derived tissues suggests multiple roles during postimplantation development. Dev Biol 162:402–413

    CAS  PubMed  Google Scholar 

  54. Hynes M, Stone DM, Dowd M, Pitts-Meek S, Goddard A, Gurney A et al (1997) Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene gli-1. Neuron 19:15–26

    CAS  PubMed  Google Scholar 

  55. Regl G, Neill GW, Eichberger T, Kasper M, Ikram MS, Koller J et al (2002) Human GLI2 and GLI1 are part of a positive feedback mechanism in basal cell carcinoma. Oncogene 21:5529–5539

    CAS  PubMed  Google Scholar 

  56. Persson M, Stamataki D, te Welscher P, Andersson E, Böse J, Rüther U et al (2002) Dorsal-ventral patterning of the spinal cord requires gli3 transcriptional repressor activity. Genes Dev 16:2865–2878

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sasaki H, Hui C, Nakafuku M, Kondoh H (1997) A binding site for gli proteins is essential for HNF-3beta floor plate enhancer activ-ity in transgenics and can respond to shh in vitro. Development 124:1313–1322

    CAS  PubMed  Google Scholar 

  58. Stone DM, Murone M, Luoh S, Ye W, Armanini MP, Gurney A et al (1999) Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor gli. J Cell Sci 112:4437–4448

    CAS  PubMed  Google Scholar 

  59. Tukachinsky H, Lopez LV, Salic A (2010) A mechanism for vertebrate hedgehog signaling: Recruitment to cilia and dissociation of SuFu- Gli protein complexes. J Cell Biol 191:415–428

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Methot N, Basler K (2000) Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of cubitus interruptus. Development 127:4001–4010

    CAS  PubMed  Google Scholar 

  61. Chen M, Wilson CW, Li Y, Ruel L, Thérond PP, King K et al (2009) Cilium-independent regulation of gli protein function by sufu in hedgehog signaling is evolutionarily conserved. Genes Dev 23:1910–1928

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T et al (2007) Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26:6442–6447

    CAS  PubMed  Google Scholar 

  63. Svard J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergstrom A et al (2006) Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian hedgehog signaling pathway. Dev Cell 10:187–197

    PubMed  Google Scholar 

  64. He M, Subramanian R, Bangs F, Omelchenko T, Liem KF Jr, Kapoor TM et al (2014) The kinesin-4 protein kif7 regulates mammalian hedgehog signalling by organizing the cilium tip compartment. Nat Cell Biol 16:663–672

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu YC, Couzens AL, Deshwar AR, McBroom-Cerajewski LD, Zhang X, Puviindran V et al (2014) The PPFIA1-PP2A protein complex promotes trafficking of kif7 to the ciliary tip and hedgehog signal-ing. Sci Signal 7:ra117

    PubMed  Google Scholar 

  66. Barzi M, Berenguer J, Menendez A, Alvarez-Rodriguez R, Pons S (2010) Sonic-hedgehog-mediated proliferation requires the localization of PKA to the cilium base. J Cell Sci 123:62–69

    CAS  PubMed  Google Scholar 

  67. Wu SM, Tan KS, Chen H, Beh TT, Yeo HC, Ng SK et al (2012) Enhanced production of neuroprogenitors, dopaminergic neurons, and identification of target genes by over expression of sonic hedgehog in human embryonic stem cells. Stem Cells Dev 21:729–741

    CAS  PubMed  Google Scholar 

  68. Yao PJ, Petralia RS, Mattson MP (2016) Sonic hedgehog signaling and hippocampal neuroplasticity. Trends Neurosci 3912:840–850

    Google Scholar 

  69. Li G, Fang L, Fernández G, Pleasure SJ (2013) The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron 78:658–672

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lai K, Kaspar B, Gage F et al (2003) Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6:21–27

    CAS  PubMed  Google Scholar 

  71. Mattson MP (2014) Superior pattern processing is the essence of the evolved human brain. Front Neurosci 8:265

    PubMed  PubMed Central  Google Scholar 

  72. Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG et al (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39:937–950

    CAS  PubMed  Google Scholar 

  73. Shahi MH, Rey JA, Castresana JS (2012) The sonic hedgehog- GLI1 signaling pathway in brain tumor development. Expert Opin Ther Targets 16:1227–1238

    CAS  PubMed  Google Scholar 

  74. Traiffort E, Angot E, Ruat M (2010) Sonic hedgehog signaling in the mammalian brain. J Neurochem 113:576–590

    CAS  PubMed  Google Scholar 

  75. Shahi MH, Afzal M, Sinha S, Eberhart CG, Rey JA, Fan X et al (2010) Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma. BMC Cancer 10:614

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shahi MH, Farheen S, Mariyath MP, Castresana JS (2016) Potential role of Shh-Gli1-BMI1 signaling pathway nexus in glioma chemoresistance. Tumour Biol 37:15107–15114

    CAS  PubMed  Google Scholar 

  77. Giakoustidis A, Giakoustidis D, Mudan S, Sklavos A, Williams R (2015) Molecular signalling in hepatocellular carcinoma: role of and crosstalk among WNT/ß-catenin, sonic hedgehog, Notch and Dickkopf-1. Can J Gastroenterol Hepatol 29:209–217

    PubMed  PubMed Central  Google Scholar 

  78. Bansal Y, Kuhad A (2016) Mitochondrial dysfunction in depression. Curr Neuropharmacol 14:610–618

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Esposito MS, Piatti VC, Laplagne DA, Morgenstern NA, Ferrari CC, Pitossi FJ et al (2005) Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci 25:10074

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ge S, Yang CH, Hsu KS, Ming GL, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54:559–566

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hanson ND, Owens MJ, Nemeroff CB (2011) Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology 36:2589–2602

    PubMed  PubMed Central  Google Scholar 

  82. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jacobs BL, van Praag H, Gage FH (2000) Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 5:262–269

    CAS  PubMed  Google Scholar 

  84. Dranovsky A, Picchini AM, Moadel T, Sisti AC, Yamada A, Kimura S et al (2011) Experience dictates stem cell fate in the adult hippocampus. Neuron 70:908–923

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kin K, Yasuhara T, Kameda M, Agari T, Sasaki T, Morimoto J et al (2017) Hippocampal neurogenesis of Wistar Kyoto rats is congenitally impaired and correlated with stress resistance. Behav Brain Res 329:148–156

    PubMed  Google Scholar 

  86. Van Bokhoven P, Oomen CA, Hoogendijk WJG, Smit AB, Lucassen PJ, Spijker S (2011) Reduction in hippocampal neurogenesis after social defeat is long-lasting and responsive to late antidepressant treatment. Eur J Neurosci 33:1833–1840

    PubMed  Google Scholar 

  87. Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H et al (2013) Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 38:1068–1077

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Huang Y, Coupland NJ, Lebel RM, Carter R, Seres P, Wilman AH et al (2013) Structural changes in hippocampal subfields in major depressive disorder: a high-field magnetic resonance imaging study. Biol Psychiatry 74:62–68

    PubMed  Google Scholar 

  89. Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstreom A (2000) Increased neurogenesis in a model of electroconvulsivetherapy. Biol Psychiat 47:1043–1049

    CAS  PubMed  Google Scholar 

  90. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK (2000) Enhancement of hippocampal neurogenesis by lithium. J Neurochem 75:1729–1734

    CAS  PubMed  Google Scholar 

  92. Keilhoff G, Bernstein HG, Becker A, Grecksch G, Wolf G (2004) Increased neurogenesis in a rat ketamine model of schizophrenia. Biol Psychiatry 56:317–322

    CAS  PubMed  Google Scholar 

  93. Boldrini M, Butt TH, Santiago AN, Tamir H, Dwork AJ, Rosoklija GB et al (2014) Benzodiazepines and the potential trophic effect of antidepressants on dentate gyrus cells in mood disorders. Int J Neuropsychopharmacol 17:1923–1933

    CAS  PubMed  Google Scholar 

  94. Miller BR, Hen R (2015) The current state of the neurogenic theory of depression and anxiety. Curr Opin Neurobiol 30:51–58

    CAS  PubMed  Google Scholar 

  95. Wadhwa M, Prabhakar A, Ray K, Roy K, Kumari P, Jha P et al (2017) Inhibiting the microglia activation improves the spatial memory and adult neurogenesis in rat hippocampus during 48 h of sleep deprivation. J Neuroinflamm 14:222

    Google Scholar 

  96. Yuan J, Ge H, Liu W, Zhu H, Chen Y, Zhang X et al (2017) M2 microglia promotes neurogenesis and oligodendrogenesis from neural stem/progenitor cells via the PPARγ signaling pathway. Oncotarget 8:19855–19865

    PubMed  PubMed Central  Google Scholar 

  97. Zhang J, Xie X, Tang M, Zhang J, Zhang B, Zhao Q et al (2017) Salvianolic acid B promotes microglial M2-polarization and rescues neurogenesis in stressexposed mice. Brain Behav Immun 66:111–124

    CAS  PubMed  Google Scholar 

  98. Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38:637–658

    CAS  PubMed  Google Scholar 

  99. Banerjee SB, Rajendran R, Dias BG, Ladiwala U, Tole S, Vaidya VA (2005) Recruitment of the sonic hedgehog signalling cascade in electroconvulsive seizure-mediated regulation of adult rat hippocampal neurogenesis. Eur J Neurosci 22:1570–1580

    PubMed  PubMed Central  Google Scholar 

  100. Rajendran R, Jha S, Fernandes KA, Banerjee SB, Mohammad F, Dias BG et al (2009) Monoaminergic regulation of sonic hedgehog signaling cascade expression in the adult rat hippocampus. Neurosci Lett 453:190–194

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Patel SS, Mahindroo N, Udayabanu M (2016) Urtica dioica leaves modulates hippocampal smoothened-glioma associated oncogene-1 pathway and cognitive dysfunction in chronically stressed mice. Biomed Pharmacother 83:676–686

    PubMed  Google Scholar 

  102. Malberg JE, Duman RS (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28:1562–1571

    CAS  PubMed  Google Scholar 

  103. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    CAS  PubMed  Google Scholar 

  104. Petralia RS, Schwartz CM, Wang YX, Mattson MP, Yao PJ (2011) Subcellular localization of patched and smoothened, the receptors for sonic hedgehog signaling, in the hippocampal neuron. J Comp Neurol 519:3684–3699

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bond CW, Angeloni N, Harrington D, Stupp S, Podlasek CA (2013) Sonic hedgehog regulates brain-derived neurotrophic factor in normal and regenerating cavernous nerves. J Sex Med 10:730–737

    CAS  PubMed  Google Scholar 

  106. Radzikinas K, Aven L, Jiang Z, Tran T, Paez-Cortez J, Boppidi K et al (2011) A Shh/miR-206/BDNF cascade coordinates innervations and formation of airway smooth muscle. J Neurosci 31:15407–15415

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang Y, Li M, Xu X, Song M, Tao H, Bai Y (2012) Green tea epigallocatechin-3-gallate (EGCG) promotes neural progenitor cell proliferation and sonic hedgehog pathway activation during adult hippocampal neurogenesis. Mol Nutr Food Res 56:1292–1303. https://doi.org/10.1002/mnfr.201200035

    Article  CAS  PubMed  Google Scholar 

  108. Tayyab M, Shahi MH, Farheen S et al (2019) Exploring the potential role of sonic hedgehog cell signalling pathway in antidepressant effects of nicotine in chronic unpredictable mild stress rat model. Heliyon 5:

    PubMed  PubMed Central  Google Scholar 

  109. Tayyab M, Farheen S, Khanam N, Hossain MM, Shahi MH (2019) Antidepressant and neuroprotective effects of naringenin via sonic hedgehog-GLI1 cell signaling pathway in a rat model of chronic unpredictable mild stress. Neuromol Med 21:250–261. https://doi.org/10.1007/s12017-019-08538-6

    Article  CAS  Google Scholar 

  110. Cai W, Ma W, Wang GT, Li YJ, Shen WD (2019) Antidepressant, anti-inflammatory, and antioxidant effects of electroacupuncture through sonic hedgehog-signaling pathway in a rat model of poststroke depression. Neuropsychiatr Dis Treat 15:1403–1411. https://doi.org/10.2147/NDT.S205033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sun D, Sun XD, Zhao L et al (2018) Neogenin, a regulator of adult hippocampal neurogenesis, prevents depressive-like behavior. Cell Death Dis 9:8. https://doi.org/10.1038/s41419-017-0019-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Samkari A, White J, Packer R (2015) SHH inhibitors for the treatment of medulloblastoma. Expert Rev Neurother 15:763–770

    CAS  PubMed  Google Scholar 

  113. Bragina O, Sergejeva S, Serg M, Zarkovsky T, Maloverjan A, Kogerman P et al (2010) Smoothened agonist augments proliferation and survival of neural cells. Neurosci Lett 482:81–85

    CAS  PubMed  Google Scholar 

  114. Heine VM, Griveau A, Chapin C, Ballard PL, Chen JK, Rowitch DH (2011) A small-molecule smoothened agonist prevents glucocorticoid-induced neonatal cerebellar injury. Sci Transl Med 3:105ra104

    PubMed  PubMed Central  Google Scholar 

  115. Yao PJ, Petralia RS, Ott C, Wang YX, Lippincott-Schwartz J, Mattson MP (2015) Dendrosomatic sonic hedgehog signaling in hippocampal neurons regulates axon elongation. J Neurosci 35:16126–16141

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gonzalez-Reyes LE, Verbitsky M, Blesa J, Jackson-Lewis V, Paredes D, Tillack K et al (2012) Sonic hedgehog maintains cellular and neurochemical homeostasis in the adult nigrostriatal circuit. Neuron 75:306–319

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Yuan F, Fang KH, Cao SY, Qu ZY, Li Q, Krencik R et al (2015) Efficient generation of region-specific forebrain neurons from human pluripotent stem cells under highly defined condition. Sci Rep 5:18550

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Peterson R, Turnbull J (2012) Sonic hedgehog is cytoprotective against oxidative challenge in a cellular model of amyotrophic lateral sclerosis. J Mol Neurosci 47:31–41

    CAS  PubMed  Google Scholar 

  119. Kwon YR, Jeong MH, Leem YE, Lee SJ, Kim HJ, Bae GU et al (2014) The Shh coreceptor Cdo is required for differentiation of midbrain dopaminergic neurons. Stem Cell Res 13:262–274

    CAS  PubMed  Google Scholar 

  120. Zhang J, Zhang ZG, Li Y, Ding X, Shang X, Lu M et al (2015) Fingolimod treatment promotes proliferation and differentiation of oligodendrocyte progenitor cells in mice with experimental autoimmune encephalomyelitis. Neurobiol Dis 76:57–66

    CAS  PubMed  Google Scholar 

  121. Wang J, Lu J, Bond MC, Chen M, Ren XR, Lyerly HK et al (2010) Identification of select glucocorticoids as Smoothened agonists: potential utility for regenerative medicine. Proc Natl Acad Sci USA 107:9323–9328

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Al-Ayadhi LY (2012) Relationship between sonic hedgehog protein, brain-derived neurotrophic factor and oxidative stress in autism spectrum disorders. Neurochem Res 37:394–400

    CAS  PubMed  Google Scholar 

  123. Desouza LA, Sathanoori M, Kapoor R, Rajadhyaksha N, Gonzalez LE, Kottmann AH et al (2011) Thyroid hormone regulates the expression of the sonic hedgehog signaling pathway in the embryonic and adult Mammalian brain. Endocrinology 152:1989–2000

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chandler CM, McDougal OM (2014) Medicinal history of North American Veratrum. Phytochem Rev 13:671–694

    CAS  PubMed  Google Scholar 

  125. Hadden MK (2014) Hedgehog pathway agonism: therapeutic potential and small-molecule development. ChemMedChem 9:27–37

    CAS  PubMed  Google Scholar 

  126. Wang X, Venugopal C, Manoranjan B, McFarlane N, O’Farrell E, Nolte S et al (2012) Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumorinitiating cells. Oncogene 31:187–199

    PubMed  Google Scholar 

  127. Takezaki T, Hide T, Takanaga H, Nakamura H, Kuratsu J, Kondo T (2011) Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci 102:1306–1312

    CAS  PubMed  Google Scholar 

  128. Lee MJ, Hatton BA, Villavicencio EH, Khanna PC, Friedman SD, Ditzler S et al (2012) Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model. Proc Natl Acad Sci USA 109:7859–7864

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Raabe E, Eberhart CG (2013) Therapeutic targeting of developmental signaling pathways in medulloblastoma: hedgehog, notch, Wnt and Myc. Curr Signal Transduct Ther 8:55–66

    CAS  Google Scholar 

  130. Pan S, Wu X, Jiang J, Gao W, Wan Y, Cheng D et al (2010) Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med Chem Lett 1:130–134

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Peukert S, He F, Dai M, Zhang R, Sun Y, Miller-Moslin K et al (2013) Discovery of NVP- LEQ506, a second-generation inhibitor of smoothened. ChemMedChem 8:1261–1265

    CAS  PubMed  Google Scholar 

  132. Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW (2016) Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers 8:22

    PubMed Central  Google Scholar 

  133. DeSouza RM, Jones BR, Lowis SP, Kurian KM (2014) Pediatric medulloblastoma—update on molecular classification driving targeted therapies. Front Oncol 4:176

    PubMed  PubMed Central  Google Scholar 

  134. Huang SY, Yang JY (2015) Targeting the Hedgehog pathway in pediatric medulloblastoma. Cancers 7:2110–2123

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Justilien V, Fields AP (2015) Molecular pathways: novel approaches for improved therapeutic targeting of Hedgehog signaling in cancer stem cells. Clin Cancer Res 21:505–513

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Bender MH, Hipskind PA, Capen AR, Cockman M, Credille KM, Gao H et al (2011) Identification and characterization of a novel smoothened antagonist for the treatment of cancer with deregulated hedgehog signaling. Cancer Res 71:2819

    Google Scholar 

  137. Hoch L, Faure H, Roudaut H, Schoenfelder A, Mann A, Girard N et al (2015) MRT-92 inhibits Hedgehog signaling by blocking overlapping binding sites in the transmembrane domain of the Smoothened receptor. FASEB J 29:1817–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Abidi A (2014) Hedgehog signaling pathway: a novel target for cancer therapy: vismodegib, a promising therapeutic option in treatment of basal cell carcinomas. Indian J Pharmacol 46:3–12

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cohen JR, Resnick DZ, Niewiadomski P, Dong H, Liau LM, Waschek JA (2010) Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures. BMC Cancer 10:676

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Rush SZ, Abel TW, Valadez JG, Pearson M, Cooper MK (2010) Activation of the Hedgehog pathway in pilocytic astrocytomas. Neuro-Oncology 12:790–798

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Onishi H, Katano M (2011) Hedgehog signaling pathway as a therapeutic target in various types of cancer. Cancer Sci 102:1756–1760

    CAS  PubMed  Google Scholar 

  142. Jin X, Jeon HM, Jin X, Kim EJ, Yin J, Jeon HY et al (2016) The ID1- CULLIN3 axis regulates intracellular SHH and WNT signaling in glioblastoma stem cells. Cell Rep 16:1629–1641

    CAS  PubMed  Google Scholar 

  143. Lampichler K, Ferrer P, Vila G, Lutz MI, Wolf F, Knosp E et al (2015) The role of proto-oncogene GLI1 in pituitary adenoma formation and cell survival regulation. Endocr Relat Cancer 22:793–803

    CAS  PubMed  Google Scholar 

  144. Ferruzzi P, Mennillo F, De Rosa A, Giordano C, Rossi M, Benedetti G et al (2012) In vitro and in vivo characterization of a novel Hedgehog signaling antagonist in human glioblastoma cell lines. Int J Cancer 131:E33–E44

    CAS  PubMed  Google Scholar 

  145. Trinh TN, McLaughlin EA, Gordon CP, McCluskey A (2014) Hedgehog signaling pathway inhibitors as cancer suppressing agents. Med Chem Commun 5:117–133

    CAS  Google Scholar 

  146. Tao H, Jin Q, Koo DI, Liao X, Englund NP, Wang Y et al (2011) Small molecule antagonists in distinct binding modes inhibit drug-resistant mutant of smoothened. Chem Biol 18:432–437

    CAS  PubMed  Google Scholar 

  147. Elamin MH, Shinwari Z, Hendrayani SF, Al- Hindi H, Al- Shail E, Al-kofide A et al (2010) Curcumin inhibits the sonic hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Mol Carcinog 49:302–314

    CAS  PubMed  Google Scholar 

  148. Mimeault M, Batra SK (2011) Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Chin Med 6:31

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Romero-Hernandez MA, Eguía-Aguilar P, Perezpena-DiazConti M, Rodriguez-Leviz A, Sadowinski-Pine S, Velasco-Rodriguez LA et al (2013) Toxic effects induced by curcumin in human astrocytoma cell lines. Toxicol Mech Methods 23:650–659

    CAS  PubMed  Google Scholar 

  150. Akare UR, Bandaru S, Shaheen U, Singh PK, Tiwari G, Singare P et al (2014) Molecular docking approaches in identification of high affinity inhibitors of human SMO receptor. Bioinformation 10:737–742

    PubMed  PubMed Central  Google Scholar 

  151. Liu R, Li J, Zhang T, Zou L, Chen Y, Wang K et al (2014) Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking. Autophagy 10:1241–1255

    PubMed  PubMed Central  Google Scholar 

  152. Ding D, Lim KS, Eberhart CG (2014) Arsenic trioxide inhibits Hedgehog, Notch and stem cell properties in glioblastoma neurospheres. Acta Neuropathol Commun 2:31

    PubMed  PubMed Central  Google Scholar 

  153. Kim J, Lee JJ, Kim J, Gardner D, Beachy PA (2010) Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc Natl Acad Sci USA 107:13432–13437

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Rohner A, Spilker ME, Lam JL, Pascual B, Bartkowski D, Li QJ et al (2012) Effective targeting of Hedgehog signaling in a medulloblastoma model with PF-5274857, a potent and selective smoothened antagonist that penetrates the blood–brain barrier. Mol Cancer Ther 11:57–65

    CAS  PubMed  Google Scholar 

  155. Saletta F, Wadham C, Ziegler DS, Marshall GM, Haber M, McCowage G et al (2014) Molecular profiling of childhood cancer: biomarkers and novel therapies. BBA Clin 1:59–77

    PubMed  PubMed Central  Google Scholar 

  156. Zhang L, Xu T, Wang S, Yu L, Liu D, Zhan R, Yu SY (2012) Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice. Behav Brain Res 235:67–72

    CAS  PubMed  Google Scholar 

  157. Yi H, Hu J, Qian J, Hackam AS (2012) Expression of brain-derived neurotrophic factor is regulated by the Wnt signaling pathway. NeuroReport 23:189–194

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Yang XH, Song SQ, Xu Y (2017) Resveratrol ameliorates chronic unpredictable mild stress-induced depression-like behavior: involvement of the HPA axis, inflammatory markers, BDNF, and Wnt/beta-catenin pathway in rats. Neuropsychiatr Dis Treat 13:2727–2736

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Fatima M, Srivastav S, Ahmad MH, Mondal AC (2019) Effects of chronic unpredictable mild stress induced prenatal stress on neurodevelopment of neonates: role of GSK-3β. Sci Rep 9:1305

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chitkara University, Punjab, India for providing the basic facilities for the completion of the current article.

Funding

This review article did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, T., Behl, T., Sehgal, A. et al. Exploring Sonic Hedgehog Cell Signaling in Neurogenesis: Its Potential Role in Depressive Behavior. Neurochem Res 46, 1589–1602 (2021). https://doi.org/10.1007/s11064-021-03307-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03307-z

Keywords

Navigation