Skip to main content
Log in

Early Isoflurane Exposure Impairs Synaptic Development in Fmr1 KO Mice via the mTOR Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

General anesthetics (GAs) may cause disruptions in brain development, and the effect of GA exposure in the setting of pre-existing neurodevelopmental disease is unknown. We tested the hypothesis that synaptic development is more vulnerable to GA-induced deficits in a mouse model of fragile X syndrome than in WT mice and asked whether they were related to the mTOR pathway, a signaling system implicated in both anesthesia toxicity and fragile X syndrome. Early postnatal WT and Fmr1-KO mice were exposed to isoflurane and brain slices were collected in adulthood. Primary neuron cultures isolated from WT and Fmr1-KO mice were exposed to isoflurane during development, in some cases treated with rapamycin, and processed for immunohistochemistry at maturity. Quantitative immunofluorescence microscopy was conducted for synaptic markers and markers of mTOR pathway activity. Isoflurane exposure caused reduction in Synpasin-1, PSD-95, and Gephyrin puncta that was significantly lower in Fmr1-KO mice than in WT mice. Similar results were found in cell culture, where synapse loss was ameliorated with rapamycin treatment. Early developmental exposure to isoflurane causes more profound synapse loss in Fmr1- KO than WT mice, and this effect is mediated by a pathologic increase in mTOR pathway activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets are available from the corresponding author upon reasonable request.

References

  1. FDA Drug Safety Communication: FDA review results in new warnings about using general anesthetics and sedation drugs in young children and pregnant women. FDA https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-review-results-new-warnings-about-using-general-anesthetics-and (2016).

  2. Kang E et al (2017) Neurogenesis and developmental anesthetic neurotoxicity. Neurotoxicol Teratol 60:33–39

    Article  CAS  PubMed  Google Scholar 

  3. Wagner M, Ryu YK, Smith SC, Mintz CD (2017) Review: Effects of anesthetics on brain circuit formation. In: Journal of Neurosurgical Anesthesiology 26:358–362 (Lippincott Williams and Wilkins).

  4. Jackson WM et al (2016) Molecular mechanisms of anesthetic neurotoxicity. J Neurosurg Anesthesiol 28:361–372

    Article  PubMed  PubMed Central  Google Scholar 

  5. Johnson SC, Pan A, Li L, Sedensky M, Morgan P (2019) Neurotoxicity of anesthetics: mechanisms and meaning from mouse intervention studies. Neurotoxicol Teratol 71:22–31

    Article  CAS  PubMed  Google Scholar 

  6. Lei X, Guo Q, Zhang J (2012) Mechanistic insights into neurotoxicity induced by anesthetics in the developing brain. Int J Mol Sci 13:6772–6799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bilotta F, Evered LA, Gruenbaum SE (2017) Neurotoxicity of anesthetic drugs: an update. Curr Opin Anaesthesiol 30:452–457

    Article  CAS  PubMed  Google Scholar 

  8. Hudson AE, Hemmings HC (2011) Are anaesthetics toxic to the brain? Br J Anaesth 107:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vutskits L, Xie Z (2016) Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci 17:705–717

    Article  CAS  PubMed  Google Scholar 

  10. Vutskits L, Davidson A (2017) Update on developmental anesthesia neurotoxicity. Curr Opin Anaesthesiol 30:337–342

    Article  PubMed  Google Scholar 

  11. Raper J, De Biasio JC, Murphy KL, Alvarado MC, Baxter MG (2018) Persistent alteration in behavioural reactivity to a mild social stressor in rhesus monkeys repeatedly exposed to sevoflurane in infancy. Br J Anaesth 120:761–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alvarado MC, Murphy KL, Baxter MG (2017) Visual recognition memory is impaired in rhesus monkeys repeatedly exposed to sevoflurane in infancy. Br J Anaesth 119:517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coleman K et al (2017) Isoflurane anesthesia has long-term consequences on motor and behavioral development in infant rhesus macaques. Anesthesiology 126:74–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilder RT et al (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804

    Article  PubMed  PubMed Central  Google Scholar 

  15. Warner DO et al (2018) Neuropsychological and behavioral outcomes after exposure of young children to procedures requiring general anesthesia: the Mayo Anesthesia safety in kids (MASK) study. Anesthesiology 129:89–105

    Article  PubMed  PubMed Central  Google Scholar 

  16. DiMaggio C, Sun LS, Kakavouli A, Byrne MW, Li G (2009) A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J Neurosurg Anesthesiol 21:286–291

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dimaggio C, Sun LS, Li G (2011) Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg 113:1143–1151

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ing C et al. (2012) Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics 130.

  19. Sun LS et al (2016) Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA 315:2312–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCann ME et al (2019) Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. Lancet 393:664–677

    Article  PubMed  PubMed Central  Google Scholar 

  21. Davidson AJ et al (2016) Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet 387:239–250

    Article  PubMed  Google Scholar 

  22. Ing C, Brambrink AM (2019) Mayo anesthesia safety in kids continued: two new studies and a potential redirection of the field. Br J Anaesth 122:716–719

    Article  PubMed  Google Scholar 

  23. Hagerman RJ et al (2017) Fragile X syndrome. Nat Rev Dis Primers 3:17065

    Article  PubMed  Google Scholar 

  24. Bagni C, Zukin RS (2019) A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron 101:1070–1088

    Article  CAS  PubMed  Google Scholar 

  25. Bostrom C et al (2016) Hippocampal dysfunction and cognitive impairment in fragile-X syndrome. Neurosci Biobehav Rev 68:563–574

    Article  CAS  PubMed  Google Scholar 

  26. Razak KA, Dominick KC, Erickson CA (2020) Developmental studies in fragile X syndrome. J Neurodev Dis 12

  27. Haseneder R et al (2009) Isoflurane and sevoflurane dose-dependently impair hippocampal long-term potentiation. Eur J Pharmacol 623:47–51

    Article  CAS  PubMed  Google Scholar 

  28. Uchimoto K et al (2014) Isoflurane impairs learning and hippocampal long-term potentiation via the saturation of synaptic plasticity. Anesthesiology 121:302–310

    Article  CAS  PubMed  Google Scholar 

  29. Joksovic PM, Lunardi N, Jevtovic-Todorovic V, Todorovic SM (2015) Early exposure to general anesthesia with isoflurane downregulates inhibitory synaptic neurotransmission in the rat thalamus. Mol Neurobiol 52:952–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Amrock LG, Starner ML, Murphy KL, Baxter MG (2015) Long-term effects of single or multiple neonatal sevoflurane exposures on rat hippocampal ultrastructure. In: Anesthesiology 122 87–95 (Lippincott Williams and Wilkins).

  31. Lunardi N, Ori C, Erisir A, Jevtovic-Todorovic V (2010) General anesthesia causes long-lasting disturbances in the ultrastructural properties of developing synapses in young rats. Neurotox Res 17:179–188

    Article  CAS  PubMed  Google Scholar 

  32. Briner A et al (2011) Developmental stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology 115:282–293

    Article  CAS  PubMed  Google Scholar 

  33. Briner A et al (2010) Volatile anesthetics rapidly increase dendritic spine density in the rat medial prefrontal cortex during synaptogenesis. Anesthesiology 112:546–556

    Article  PubMed  Google Scholar 

  34. Borrie SC, Brems H, Legius E, Bagni C (2017) Cognitive dysfunctions in intellectual disabilities: the contributions of the Ras-MAPK and PI3K-AKT-mTOR pathways. Annu Rev Genomics Hum Genet 18:115–142

    Article  CAS  PubMed  Google Scholar 

  35. Waung MW, Huber KM (2009) Protein translation in synaptic plasticity: mGluR-LTD. Fragile X Curr Opin Neurobiol 19:319–326

    Article  CAS  PubMed  Google Scholar 

  36. Liu GY, Sabatini DM (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 21:183–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee DY (2015) Roles of mTOR signaling in brain development. Exp Neurobiol 24:177–185

    Article  PubMed  PubMed Central  Google Scholar 

  38. Costa-Mattioli M, Monteggia LM (2013) mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat Neurosci 16:1537–1543

    Article  CAS  PubMed  Google Scholar 

  39. Crino PB (2016) The mTOR signalling cascade: paving new roads to cure neurological disease. Nat Rev Neurol 12:379–392

    Article  CAS  PubMed  Google Scholar 

  40. Takei N, Nawa H (2014) mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci 7:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoeffer CA et al (2012) Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes, Brain Behav 11:332–341

    Article  CAS  Google Scholar 

  42. Sharma A et al (2010) Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci 30:694–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dahlhaus, R. Of men and mice: modeling the fragile X syndrome. Front Mol Neurosci 11 (2018).

  44. Kang E et al (2017) Early postnatal exposure to isoflurane causes cognitive deficits and disrupts development of newborn hippocampal neurons via activation of the mTOR pathway. PLOS Biol 15:e2001246

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xu J, Kang E, Mintz CD (2018) Anesthetics disrupt brain development via actions on the mTOR pathway. Commun Integr Biol 11:1–4

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xu, J. et al. (2018) Early developmental exposure to general anesthetic agents in primary neuron culture disrupts synapse formation via actions on the mTOR pathway. Int. J. Mol. Sci. 19

  47. Na HS et al (2017) The genetics of isoflurane-induced developmental neurotoxicity. Neurotoxicol Teratol 60:40–49

    Article  CAS  PubMed  Google Scholar 

  48. Ju X et al (2020) The mTOR inhibitor rapamycin prevents general anesthesia-induced changes in synaptic transmission and mitochondrial respiration in late postnatal mice. Front Cell Neurosci 14:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goslin K, Banker G (1989) Experimental observations on the development of polarity by hippocampal neurons in culture. J Cell Biol 108:1507–1516

    Article  CAS  PubMed  Google Scholar 

  50. Li Q, Mathena RP, Xu J, Eregha ON, Wen JM, C. D. Early Postnatal exposure to isoflurane disrupts oligodendrocyte development and myelin formation in the mouse hippocampus. Anesthesiology (2019).

  51. Suresh A, Dunaevsky A (2017) Relationship between synaptic AMPAR and spine dynamics: Impairments in the FXS mouse. Cereb Cortex 27:4244–4256

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jawaid S et al (2018) Alterations in CA1 hippocampal synapses in a mouse model of fragile X syndrome. Glia 66:789–800

    Article  PubMed  Google Scholar 

  53. Jevtovic-Todorovic V (2016) General anesthetics and neurotoxicity: How much do we know? Anesthesiol Clin 34:439–451

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hall SS, Jiang H, Reiss AL, Greicius MD (2013) Identifying large-scale brain networks in fragile X syndrome. JAMA Psychiat 70:1215

    Article  Google Scholar 

  55. Guo W et al (2011) Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning. Nat Med 17:559–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kazdoba TM, Leach PT, Silverman JL, Crawley JN (2014) Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis Res 3:118–133

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mintz CD, Wagner M, Loepke AW (2012) Preclinical research into the effects of anesthetics on the developing brain: Promises and pitfalls. J Neurosurg Anesthesiol 24 362–367 (J Neurosurg Anesthesiol).

  58. Jevtovic-Todorovic V (2018) Exposure of developing brain to general anesthesia: What is the animal evidence? Anesthesiology 128:832–839

    Article  PubMed  PubMed Central  Google Scholar 

  59. Loepke AW, Soriano SG (2008) An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg 106:1681–1707

    Article  PubMed  Google Scholar 

  60. Palanisamy A et al (2016) Prolonged treatment with propofol transiently impairs proliferation but not survival of rat neural progenitor cells in vitro. PLoS ONE 11:e0158058

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jiang Y et al (2016) Long-term fate mapping to assess the impact of postnatal isoflurane exposure on hippocampal progenitor cell productivity. Anesthesiology 125:1159–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stratmann G, Sall JW, May LDV, Loepke AW, Lee MT (2010) Beyond anesthetic properties: the effects of isoflurane on brain cell death, neurogenesis, and long-term neurocognitive function. Anesth Analg 110:431–437

    Article  CAS  PubMed  Google Scholar 

  63. Xu J et al (2018) Early developmental exposure to general anesthetic agents in primary neuron culture disrupts synapse formation via actions on the mTOR pathway. Int J Mol Sci 19:2183

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported in part by the Chinese Scholarship Council (Second Affiliated Hospital of Xi'an Jiaotong University) and the NIH (Johns Hopkins University School of Medicine—Grant Nos. R01GM137213 and R01GM120519).

Author information

Authors and Affiliations

Authors

Contributions

Data curation: JW and JX; formal analysis: JW and JHC; funding acquisition: JW and CDM; methodology: JW, JX, RPM, JHC, and CDM; software: JW; supervision: CDM; writing—original draft: JW, JX, and CDM; Writing—review and editing: JX, RPM, and CDM All authors reviewed the final manuscript.

Corresponding author

Correspondence to C. David Mintz.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Xu, J., Mathena, R.P. et al. Early Isoflurane Exposure Impairs Synaptic Development in Fmr1 KO Mice via the mTOR Pathway. Neurochem Res 46, 1577–1588 (2021). https://doi.org/10.1007/s11064-021-03301-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03301-5

Keywords

Navigation