Skip to main content
Log in

Calcium-Dependent Regulation of the Neuronal Glycine Transporter GlyT2 by M2 Muscarinic Acetylcholine Receptors

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The neuronal glycine transporter GlyT2 modulates inhibitory glycinergic neurotransmission and plays a key role in regulating nociceptive signal progression. The cholinergic system acting through muscarinic acetylcholine receptors (mAChRs) also mediates important regulations of nociceptive transmission being the M2 subtype the most abundantly expressed in the spinal cord. Here we studied the effect of M2 mAChRs stimulation on GlyT2 function co-expressed in a heterologous system with negligible levels of muscarinic receptor activity. We found GlyT2 is down-regulated by carbachol in a calcium-dependent manner. Different components involved in cell calcium homeostasis were analysed to establish a role in the mechanism of GlyT2 inhibition. GlyT2 down-regulation by carbachol was increased by thapsigargin and reduced by internal store depletion, although calcium release from endoplasmic reticulum or mitochondria had a minor role on GlyT2 inhibition. Our results are consistent with a GlyT2 sensitivity to intracellular calcium mobilized by M2 mAChRs in the subcortical area of the plasma membrane. A crucial role of the plasma membrane sodium calcium exchanger NCX is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ishikawa T, Marsala M, Sakabe T, Yaksh TL (2000) Characterization of spinal amino acid release and touch-evoked allodynia produced by spinal glycine or GABA(A) receptor antagonist. Neuroscience 95(3):781–786

    Article  CAS  Google Scholar 

  2. Huang W, Simpson RK (2000) Long-term intrathecal administration of glycine prevents mechanical hyperalgesia in a rat model of neuropathic pain. Neurol Res 22(2):160–4

    Article  Google Scholar 

  3. Rees MI et al (2006) Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat Genet 38(7):801–806

    Article  CAS  Google Scholar 

  4. Fornes A, Nunez E, Alonso-Torres P, Aragon C, Lopez-Corcuera B (2008) Trafficking properties and activity regulation of the neuronal glycine transporter GLYT2 by protein kinase C. Biochem J 412(3):495–506

    Article  CAS  Google Scholar 

  5. de Juan-Sanz J et al (2013) Na+/K+-ATPase is a new interacting partner for the neuronal glycine transporter GlyT2 that downregulates its expression in vitro and in vivo. J Neurosci 33(35):14269–81

    Article  Google Scholar 

  6. de Juan-Sanz J et al (2014) Presynaptic control of glycine transporter 2 (GlyT2) by physical and functional association with plasma membrane Ca2+-ATPase (PMCA) and Na+-Ca2+ exchanger (NCX). J Biol Chem 289(49):34308–24

    Article  Google Scholar 

  7. Hilgemann DW, Nicoll DA, Philipson KD (1991) Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature 352(6337):715–718. https://doi.org/10.1038/352715a0

    Article  CAS  PubMed  Google Scholar 

  8. Duttaroy A et al (2002) Evaluation of muscarinic agonist-induced analgesia in muscarinic acetylcholine receptor knockout mice. Mol Pharmacol 62(5):1084–1093. https://doi.org/10.1124/mol.62.5.1084

    Article  CAS  PubMed  Google Scholar 

  9. Jones PG, Dunlop J (2007) Targeting the cholinergic system as a therapeutic strategy for the treatment of pain. Neuropharmacology 53(2):197–206. https://doi.org/10.1016/j.neuropharm.2007.04.002

    Article  CAS  PubMed  Google Scholar 

  10. Caulfield MP (1993) Muscarinic receptors–characterization, coupling and function. Pharmacol Ther 58(3):319–379. https://doi.org/10.1016/0163-7258(93)90027-b

    Article  CAS  PubMed  Google Scholar 

  11. Wess J (1996) Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 10(1):69–99. https://doi.org/10.1615/critrevneurobiol.v10.i1.40

    Article  CAS  PubMed  Google Scholar 

  12. Chen SR, Chen H, Yuan WX, Wess J, Pan HL (2010) Dynamic control of glutamatergic synaptic input in the spinal cord by muscarinic receptor subtypes defined using knockout mice. J Biol Chem 285(52):40427–40437. https://doi.org/10.1074/jbc.M110.176966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang HM, Zhou HY, Chen SR, Gautam D, Wess J, Pan HL (2007) Control of glycinergic input to spinal dorsal horn neurons by distinct muscarinic receptor subtypes revealed using knockout mice. J Pharmacol Exp Ther 323(3):963–71. https://doi.org/10.1124/jpet.107.127795

    Article  CAS  PubMed  Google Scholar 

  14. Cai Y-Q, Chen S-R, Han H-D, Sood AK, Lopez-Berestein G, Pan H-L (2009) Role of M2, M3, and M4 muscarinic receptor subtypes in the spinal cholinergic control of nociception revealed using siRNA in rats. J Neurochem 111(4):1000–1010. https://doi.org/10.1111/j.1471-4159.2009.06396.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferrier J et al (2015) Cholinergic neurotransmission in the posterior insular cortex is altered in preclinical models of neuropathic pain: key role of muscarinic M2 receptors in donepezil-induced antinociception. J Neurosci 35(50):16418–16430. https://doi.org/10.1523/JNEUROSCI.1537-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang XL, Zhang HM, Li DP, Chen SR, Pan HL (2006) Dynamic regulation of glycinergic input to spinal dorsal horn neurones by muscarinic receptor subtypes in rats. J Physiol 571(Pt 2):403–13. https://doi.org/10.1113/jphysiol.2005.102905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jimenez E et al (2011) P2Y purinergic regulation of the glycine neurotransmitter transporters. J Biol Chem 286:10712–10724. https://doi.org/10.1074/jbc.M110.167056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zafra F, Gomeza J, Olivares L, Aragon C, Gimenez C (1995) “Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat CNS. Eur J Neurosci 7(6):1342–1352

    Article  CAS  Google Scholar 

  19. Benito-Munoz C et al (2018) Modification of a putative third sodium site in the glycine transporter GlyT2 influences the chloride dependence of substrate transport. Front Mol Neurosci 11:347. https://doi.org/10.3389/fnmol.2018.00347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gimenez C et al (2012) A novel dominant hyperekplexia mutation Y705C alters trafficking and biochemical properties of the presynaptic glycine transporter GlyT2. J Biol Chem 287(34):28986–29002. https://doi.org/10.1074/jbc.M111.319244M111.319244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Villarejo-López L et al (2017) P2X receptors up-regulate the cell-surface expression of the neuronal glycine transporter GlyT2. Neuropharmacology 125:99–116

    Article  Google Scholar 

  22. Levey AI (1993) Immunological localization of m1–m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52(5–6):441–448. https://doi.org/10.1016/0024-3205(93)90300-r

    Article  CAS  PubMed  Google Scholar 

  23. Tsuga H, Okuno E, Kameyama K, Haga T (1998) “Sequestration of human muscarinic acetylcholine receptor hm1-hm5 subtypes: effect of G protein-coupled receptor kinases GRK2, GRK4, GRK5 and GRK6. J Pharmacol Exp Ther 284(3):1218–1226

    CAS  PubMed  Google Scholar 

  24. Gómez-Ramos A, Díaz-Hernández M, Rubio A, Díaz-Hernández JI, Miras-Portugal MT, Avila J (2009) Characteristics and consequences of muscarinic receptor activation by tau protein. Eur Neuropsychopharmacol 19(10):708–717. https://doi.org/10.1016/j.euroneuro.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  25. Wall SJ, Yasuda RP, Li M, Wolfe BB (1991) “Development of an antiserum against m3 muscarinic receptors: distribution of m3 receptors in rat tissues and clonal cell lines. Mol Pharmacol 40(5):783–789

    CAS  PubMed  Google Scholar 

  26. Zhang H-M, Chen S-R, Matsui M, Gautam D, Wess J, Pan H-L (2006) Opposing functions of spinal M2, M3, and M4 receptor subtypes in regulation of GABAergic inputs to dorsal horn neurons revealed by muscarinic receptor knockout mice. Mol Pharmacol 69(3):1048–1055

  27. Métioui M, Grosfils K, Dehaye JP (1994) Regulation by thapsigargin and carbachol of the intracellular calcium concentration in rat submandibular glands. Gen Pharmacol 25(7):1353–1359. https://doi.org/10.1016/0306-3623(94)90159-7

    Article  PubMed  Google Scholar 

  28. Collison DJ, Coleman RA, James RS, Carey J, Duncan G (2000) Characterization of muscarinic receptors in human lens cells by pharmacologic and molecular techniques. Invest Ophthalmol Vis Sci 41(9):2633–2641

    CAS  PubMed  Google Scholar 

  29. Fritz N, Macrez N, Mironneau J, Jeyakumar LH, Fleischer S, Morel J-L (2005) Ryanodine receptor subtype 2 encodes Ca2+ oscillations activated by acetylcholine via the M2 muscarinic receptor/cADP-ribose signalling pathway in duodenum myocytes. J Cell Sci 118(Pt 10):2261–2270. https://doi.org/10.1242/jcs.02344

    Article  CAS  PubMed  Google Scholar 

  30. Wen J et al (2018) Na(+)/Ca(2+) exchanger 1 in airway smooth muscle of allergic inflammation mouse model. Front Pharmacol 9:1471. https://doi.org/10.3389/fphar.2018.01471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529. https://doi.org/10.1038/nrm1155

    Article  CAS  PubMed  Google Scholar 

  32. Davis KA, Samson SE, Hammel KE, Kiss L, Fulop F, Grover AK (2009) Functional linkage of Na+-Ca2+-exchanger to sarco/endoplasmic reticulum Ca2+ pump in coronary artery: comparison of smooth muscle and endothelial cells. J Cell Mol Med 13(8B):1775–1783. https://doi.org/10.1111/j.1582-4934.2008.00480.x

    Article  PubMed  Google Scholar 

  33. Grover AK (2017) Sodium-calcium exchanger in pig coronary artery. Adv Pharmacol 78:145–170. https://doi.org/10.1016/bs.apha.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  34. Charles AC, Dirksen ER, Merrill JE, Sanderson MJ (1993) Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin. Glia 7(2):134–145. https://doi.org/10.1002/glia.440070203

    Article  CAS  PubMed  Google Scholar 

  35. Duncan G, Webb SF, Dawson AP, Bootman MD, Elliott AJ (1993) Calcium regulation in tissue-cultured human and bovine lens epithelial cells. Invest Ophthalmol Vis Sci 34(10):2835–2842

    CAS  PubMed  Google Scholar 

  36. Mathes C, Thompson SH (1994) Calcium current activated by muscarinic receptors and thapsigargin in neuronal cells. J Gen Physiol 104(1):107–121. https://doi.org/10.1085/jgp.104.1.107

    Article  CAS  PubMed  Google Scholar 

  37. Garavito-Aguilar ZV, Recio-Pinto E, Corrales AV, Zhang J, Blanck TJJ, Xu F (2004) Differential thapsigargin-sensitivities and interaction of Ca2+ stores in human SH-SY5Y neuroblastoma cells. Brain Res 1011(2):177–186. https://doi.org/10.1016/j.brainres.2004.03.020

    Article  CAS  PubMed  Google Scholar 

  38. Thomas GR, Sanderson J, Duncan G (1999) Thapsigargin inhibits a potassium conductance and stimulates calcium influx in the intact rat lens. J Physiol 516(Pt 1):191–199

    Article  CAS  Google Scholar 

  39. López-Sanjurjo CI, Tovey SC, Prole DL, Taylor CW (2013) Lysosomes shape Ins(1,4,5)<em>P</em>3-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum. J Cell Sci 126(1):289. https://doi.org/10.1242/jcs.116103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Querfurth HW, Haughey NJ, Greenway SC, Yacono PW, Golan DE, Geiger JD (1998) Expression of ryanodine receptors in human embryonic kidney (HEK293) cells. Biochem J 334(1):79–86. https://doi.org/10.1042/bj3340079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Romei C, Di Prisco S, Raiteri M, Raiteri L (2011) “Glycine release provoked by disturbed Na+, Na+ and Ca2+ homeostasis in cerebellar nerve endings: roles of Ca2+ channels, Na+/Ca2+ exchangers and GlyT2 transporter reversal. J Neurochem 119(1):50–63. https://doi.org/10.1111/j.1471-4159.2011.07401.x

    Article  CAS  PubMed  Google Scholar 

  42. Wuest M, Hiller N, Braeter M, Hakenberg OW, Wirth MP, Ravens U (2007) Contribution of Ca2+ influx to carbachol-induced detrusor contraction is different in human urinary bladder compared to pig and mouse. Eur J Pharmacol 565(1–3):180–189. https://doi.org/10.1016/j.ejphar.2007.02.046

    Article  CAS  PubMed  Google Scholar 

  43. Peppiatt CM et al (2003) 2-Aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium 34(1):97–108. https://doi.org/10.1016/s0143-4160(03)00026-5

    Article  CAS  PubMed  Google Scholar 

  44. Frandsen A, Schousboe A (1992) Mobilization of dantrolene-sensitive intracellular calcium pools is involved in the cytotoxicity induced by quisqualate and N-methyl-D-aspartate but not by 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate and kainate in cultured cerebral cortical neurons. Proc Natl Acad Sci USA 89(7):2590–2594. https://doi.org/10.1073/pnas.89.7.2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hernández-SanMiguel E et al (2006) The mitochondrial Na+/Ca2+ exchanger plays a key role in the control of cytosolic Ca2+ oscillations. Cell Calcium 40(1):53–61. https://doi.org/10.1016/j.ceca.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  46. Tibbs GR, Barrie AP, Van Mieghem FJ, McMahon HT, Nicholls DG (1989) Repetitive action potentials in isolated nerve terminals in the presence of 4-aminopyridine: effects on cytosolic free Ca2+ and glutamate release. J Neurochem 53(6):1693–1699. https://doi.org/10.1111/j.1471-4159.1989.tb09232.x

    Article  CAS  PubMed  Google Scholar 

  47. Kramer PF, Williams JT (2016) Calcium Release from Stores Inhibits GIRK. Cell Rep 17(12):3246–3255. https://doi.org/10.1016/j.celrep.2016.11.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bünemann M, Meyer T, Pott L, Hosey M (2000) Novel inhibition of gbetagamma-activated potassium currents induced by M(2) muscarinic receptors via a pertussis toxin-insensitive pathway. J Biol Chem 275(17):12537–12545. https://doi.org/10.1074/jbc.275.17.12537

    Article  PubMed  Google Scholar 

  49. Dixon AK, Gubitz AK, Ashford ML, Richardson PJ, Freeman TC (1995) Distribution of mRNA encoding the inwardly rectifying K+ channel, BIR1 in rat tissues. FEBS Lett 374(1):135–140. https://doi.org/10.1016/0014-5793(95)01091-r

    Article  CAS  PubMed  Google Scholar 

  50. Grunnet M, Hay-Schmidt A, Klaerke DA (2005) Quantification and distribution of big conductance Ca2+-activated K+ channels in kidney epithelia. Biochim Biophys Acta 1714(2):114–124. https://doi.org/10.1016/j.bbamem.2005.05.012

    Article  CAS  PubMed  Google Scholar 

  51. Zhou X-B et al (2008) M2 muscarinic receptors induce airway smooth muscle activation via a dual, Gbetagamma-mediated inhibition of large conductance Ca2+-activated K+ channel activity. J Biol Chem 283(30):21036–21044. https://doi.org/10.1074/jbc.M800447200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pyott SJ, Duncan RK (2016) BK Channels in the Vertebrate Inner Ear. Int Rev Neurobiol 128:369–399. https://doi.org/10.1016/bs.irn.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  53. Friedman S, Tauber M, Ben-Chaim Y (2020) Sodium ions allosterically modulate the M2 muscarinic receptor. Sci Rep 10(1):11177

    Article  CAS  Google Scholar 

  54. Jin X, Muntean BS, Aal-Aaboda MS, Duan Q, Zhou J, Nauli SM (2014) L-type calcium channel modulates cystic kidney phenotype. Biochim Biophys Acta 1842(9):1518–1526. https://doi.org/10.1016/j.bbadis.2014.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rosker C et al (2004) Ca(2+) signaling by TRPC3 involves Na(+) entry and local coupling to the Na(+)/Ca(2+) exchanger. J Biol Chem 279(14):13696–13704. https://doi.org/10.1074/jbc.M308108200

    Article  CAS  PubMed  Google Scholar 

  56. Lemos VS, Poburko D, Liao C-H, Cole WC, van Breemen C (2007) Na+ entry via TRPC6 causes Ca2+ entry via NCX reversal in ATP stimulated smooth muscle cells. Biochem Biophys Res Commun 352(1):130–134. https://doi.org/10.1016/j.bbrc.2006.10.160

    Article  CAS  PubMed  Google Scholar 

  57. Díaz Y et al (2012) Dissecting the Ca2+ entry pathways induced by rotavirus infection and NSP4-EGFP expression in Cos-7 cells. Virus Res 167(2):285–296. https://doi.org/10.1016/j.virusres.2012.05.012

    Article  CAS  PubMed  Google Scholar 

  58. Iwamoto T, Watanabe Y, Kita S, Blaustein MP (2007) Na+/Ca2+ exchange inhibitors: a new class of calcium regulators. Cardiovasc Hematol Disord Drug Targets 7(3):188–198. https://doi.org/10.2174/187152907781745288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to FJ Díez-Guerra and JM Cuezva for generous support. The confocal microscopy facility at the CBMSO (Madrid, Spain) is also acknowledged for valuable and expert help with the confocal microscopy work. Laura Contreras (CBMSO, Madrid) is acknowledged for expert assistance with the calcium imaging in COS7 cells. Authors want to acknowledge the important contribution of Professor Baruch I. Kanner to the field of neurotransmitter transporters and are honored for his friendship.

Funding

This work was supported by grants of the Spanish ‘Ministerio de Economía y Competitividad’, grant number SAF2017-84235-R (AEI/FEDER, EU) to B.L.-C. and by institutional grants from the Fundación Ramón Areces and Banco de Santander to the CBMSO.

Author information

Authors and Affiliations

Authors

Contributions

Conceived the work: BL-C performed the experiments: EJ, AF, RF and EN analyzed the data: BL-C and CA. Wrote the paper: BL-C.

Corresponding author

Correspondence to Beatriz López-Corcuera.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, E., Fornés, A., Felipe, R. et al. Calcium-Dependent Regulation of the Neuronal Glycine Transporter GlyT2 by M2 Muscarinic Acetylcholine Receptors. Neurochem Res 47, 190–203 (2022). https://doi.org/10.1007/s11064-021-03298-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03298-x

Keywords

Navigation