Skip to main content

Advertisement

Log in

Activation of Dopamine Signals in the Olfactory Tubercle Facilitates Emergence from Isoflurane Anesthesia in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Activation of dopamine (DA) neurons is essential for the transition from sleep to wakefulness and maintenance of awakening, and sufficient to accelerate the emergence from general anesthesia in animals. Dopamine receptors (DR) are involve in arousal mediation. In the present study, we showed that the olfactory tubercle (OT) was active during emergence from isoflurane anesthesia, local injection of dopamine D1 receptor (D1R) agonist chloro-APB (1 mg/mL) and D2 receptor (D2R) agonist quinpirole (1 mg/mL) into OT enhanced behavioural and cortical arousal from isoflurane anesthesia, while D1R antagonist SCH-23390 (1 mg/mL) and D2R antagonist raclopride (2.5 mg/mL) prolonged recovery time. Optogenetic activation of DAergic terminals in OT also promoted behavioural and cortical arousal from isoflurane anesthesia. However, neither D1R/D2R agonists nor D1R/D2R antagonists microinjection had influences on the induction of isoflurane anesthesia. Optogenetic stimulation on DAergic terminals in OT also had no impact on the anesthesia induction. Our results indicated that DA signals in OT accelerated emergence from isoflurane anesthesia. Furthermore, the induction of general anesthesia, different from the emergence process, was not mediated by the OT DAergic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brown EN, Lydic R, Schiff ND (2010) General anesthesia, sleep, and coma. N Engl J Med 363(27):2638–2650. https://doi.org/10.1056/NEJMra0808281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9(5):370–386. https://doi.org/10.1038/nrn2372

    Article  CAS  PubMed  Google Scholar 

  3. Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L (2016) VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 19(10):1356–1366. https://doi.org/10.1038/nn.4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taylor NE, Van Dort CJ, Kenny JD, Pei J, Guidera JA, Vlasov KY, Lee JT, Boyden ES, Brown EN, Solt K (2016) Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc Natl Acad Sci U S A 113(45):12826–12831. https://doi.org/10.1073/pnas.1614340113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown EN, Purdon PL, Van Dort CJ (2011) General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu Rev Neurosci 34:601–628. https://doi.org/10.1146/annurev-neuro-060909-153200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11(2):113–133. https://doi.org/10.1016/j.smrv.2006.08.003

    Article  PubMed  Google Scholar 

  7. Cho JR, Treweek JB, Robinson JE, Xiao C, Bremner LR, Greenbaum A, Gradinaru V (2017) Dorsal Raphe Dopamine Neurons Modulate Arousal and Promote Wakefulness by Salient Stimuli. Neuron 94(6):1205–1219. https://doi.org/10.1016/j.neuron.2017.05.020

    Article  CAS  PubMed  Google Scholar 

  8. Ren S, Wang Y, Yue F, Cheng X, Dang R, Qiao Q, Sun X, Li X, Jiang Q, Yao J, Qin H, Wang G, Liao X, Gao D, Xia J, Zhang J, Hu B, Yan J, Wang Y, Xu M, Han Y, Tang X, Chen X, He C, Hu Z (2018) The paraventricular thalamus is a critical thalamic area for wakefulness. Science 362(6413):429–434. https://doi.org/10.1126/science.aat2512

    Article  CAS  PubMed  Google Scholar 

  9. Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, Ba W, Miracca G, Wang D, Li L, Guo J, Chen M, Li Y, Yustos R, Vyssotski AL, Burdakov D, Yang Q, Dong H, Franks NP, Wisden W (2019) GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci 22(1):106–119. https://doi.org/10.1038/s41593-018-0288-9

    Article  CAS  PubMed  Google Scholar 

  10. Monti JM (2013) The neurotransmitters of sleep and wake, a physiological reviews series. Sleep Med Rev 17(4):313–315. https://doi.org/10.1016/j.smrv.2013.02.004

    Article  PubMed  Google Scholar 

  11. Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26(1):193–202. https://doi.org/10.1523/JNEUROSCI.2244-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265(5180):1826–1831. https://doi.org/10.1126/science.8091209

    Article  CAS  PubMed  Google Scholar 

  13. Fields HL, Hjelmstad GO, Margolis EB, Nicola SM (2007) Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 30:289–316. https://doi.org/10.1146/annurev.neuro.30.051606.094341

    Article  CAS  PubMed  Google Scholar 

  14. Obeso JA, Marin C, Rodriguez-Oroz C, Blesa J, Benitez-Temino B, Mena-Segovia J, Rodriguez M, Olanow CW (2008) The basal ganglia in Parkinson’s disease: current concepts and unexplained observations. Ann Neurol. https://doi.org/10.1002/ana.21481

    Article  PubMed  Google Scholar 

  15. Solt K, Van Dort CJ, Chemali JJ, Taylor NE, Kenny JD, Brown EN (2014) Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia. Anesthesiology 121(2):311–319. https://doi.org/10.1097/ALN.0000000000000117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Z, Zhang H, Wen P, Zhu X, Wang L, Liu Q, Wang J, He X, Wang H, Xu F (2017) Whole-Brain Mapping of the Inputs and Outputs of the Medial Part of the Olfactory Tubercle. Front Neural Circuits. https://doi.org/10.3389/fncir.2017.00052

    Article  PubMed  PubMed Central  Google Scholar 

  17. Murata K, Kanno M, Ieki N, Mori K, Yamaguchi M (2015) Mapping of Learned Odor-Induced Motivated Behaviors in the Mouse Olfactory Tubercle. J Neurosci 35(29):10581–10599. https://doi.org/10.1523/JNEUROSCI.0073-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wesson DW, Wilson DA (2011) Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more? Neurosci Biobehav Rev 35(3):655–668. https://doi.org/10.1016/j.neubiorev.2010.08.004

    Article  PubMed  Google Scholar 

  19. Wesson DW (2020) The Tubular Striatum. J Neurosci 40(39):7379–7386. https://doi.org/10.1523/JNEUROSCI.1109-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiong A, Wesson DW (2016) Illustrated Review of the Ventral Striatum’s Olfactory Tubercle. Chem Senses 41(7):549–555. https://doi.org/10.1093/chemse/bjw069

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang Z, Liu Q, Wen P, Zhang J, Rao X, Zhou Z, Zhang H, He X, Li J, Zhou Z, Xu X, Zhang X, Luo R, Lv G, Li H, Cao P, Wang L, Xu F (2017) Activation of the dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-preference and reward. Elife. https://doi.org/10.7554/eLife.25423

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oettl LL, Scheller M, Filosa C, Wieland S, Haag F, Loeb C, Durstewitz D, Shusterman R, Russo E, Kelsch W (2020) Phasic dopamine reinforces distinct striatal stimulus encoding in the olfactory tubercle driving dopaminergic reward prediction. Nat Commun. https://doi.org/10.1038/s41467-020-17257-7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Luo YJ, Li YD, Wang L, Yang SR, Yuan XS, Wang J, Cherasse Y, Lazarus M, Chen JF, Qu WM, Huang ZL (2018) Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors. Nat Commun 9(1):1576. https://doi.org/10.1038/s41467-018-03889-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li J, Li H, Wang D, Guo Y, Zhang X, Ran M, Yang C, Yang Q, Dong H (2019) Orexin activated emergence from isoflurane anaesthesia involves excitation of ventral tegmental area dopaminergic neurones in rats. Br J Anaesth 123(4):497–505. https://doi.org/10.1016/j.bja.2019.07.005

    Article  CAS  PubMed  Google Scholar 

  25. Wang TX, Xiong B, Xu W, Wei HH, Qu WM, Hong ZY, Huang ZL (2019) Activation of Parabrachial Nucleus Glutamatergic Neurons Accelerates Reanimation from Sevoflurane Anesthesia in Mice. Anesthesiology 130(1):106–118. https://doi.org/10.1097/ALN.0000000000002475

    Article  CAS  PubMed  Google Scholar 

  26. Yin L, Li L, Deng J, Wang D, Guo Y, Zhang X, Li H, Zhao S, Zhong H, Dong H (2019) Optogenetic/Chemogenetic Activation of GABAergic Neurons in the Ventral Tegmental Area Facilitates General Anesthesia via Projections to the Lateral Hypothalamus in Mice. Front Neural Circuits. https://doi.org/10.3389/fncir.2019.00073

    Article  PubMed  PubMed Central  Google Scholar 

  27. Muindi F, Kenny JD, Taylor NE, Solt K, Wilson MA, Brown EN, Van Dort CJ (2016) Electrical stimulation of the parabrachial nucleus induces reanimation from isoflurane general anesthesia. Behav Brain Res 306:20–25. https://doi.org/10.1016/j.bbr.2016.03.021

    Article  CAS  PubMed  Google Scholar 

  28. Friedman EB, Sun Y, Moore JT, Hung HT, Meng QC, Perera P, Joiner WJ, Thomas SA, Eckenhoff RG, Sehgal A, Kelz MB (2010) A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS ONE 5(7):e11903. https://doi.org/10.1371/journal.pone.0011903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu B, Yu T, Yuan J, Gong X, Zhang M (2017) Noradrenergic transmission in the central medial thalamic nucleus modulates the electroencephalographic activity and emergence from propofol anesthesia in rats. J Neurochem 140(6):862–873. https://doi.org/10.1111/jnc.13939

    Article  CAS  PubMed  Google Scholar 

  30. Zhou X, Wang Y, Zhang C, Wang M, Zhang M, Yu L, Yan M (2015) The Role of Dopaminergic VTA Neurons in General Anesthesia. PLoS ONE 10(9):e138187. https://doi.org/10.1371/journal.pone.0138187

    Article  CAS  Google Scholar 

  31. Luo T, Leung LS (2011) Involvement of tuberomamillary histaminergic neurons in isoflurane anesthesia. Anesthesiology 115(1):36–43. https://doi.org/10.1097/ALN.0b013e3182207655

    Article  CAS  PubMed  Google Scholar 

  32. Kelz MB, Sun Y, Chen J, Cheng MQ, Moore JT, Veasey SC, Dixon S, Thornton M, Funato H, Yanagisawa M (2008) An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci U S A 105(4):1309–1314. https://doi.org/10.1073/pnas.0707146105

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang LN, Li ZJ, Tong L, Guo C, Niu JY, Hou WG, Dong HL (2012) Orexin-A facilitates emergence from propofol anesthesia in the rat. Anesth Analg 115(4):789–796. https://doi.org/10.1213/ANE.0b013e3182645ea3

    Article  CAS  PubMed  Google Scholar 

  34. Zhang LN, Yang C, Ouyang PR, Zhang ZC, Ran MZ, Tong L, Dong HL, Liu Y (2016) Orexin-A facilitates emergence of the rat from isoflurane anesthesia via mediation of the basal forebrain. Neuropeptides 58:7–14. https://doi.org/10.1016/j.npep.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  35. Taylor NE, Chemali JJ, Brown EN, Solt K (2013) Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia. Anesthesiology 118(1):30–39. https://doi.org/10.1097/ALN.0b013e318278c896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones BE (2020) Arousal and sleep circuits. Neuropsychopharmacology 45(1):6–20. https://doi.org/10.1038/s41386-019-0444-2

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Fu B, Liu C, Yu S, Luo T, Zhang L, Zhou W, Yu T (2019) Activation of noradrenergic terminals in the reticular thalamus delays arousal from propofol anesthesia in mice. Faseb J 33(6):7252–7260. https://doi.org/10.1096/fj.201802164RR

    Article  CAS  PubMed  Google Scholar 

  38. Tai SK, Ma J, Leung LS (2014) Medial septal cholinergic neurons modulate isoflurane anesthesia. Anesthesiology 120(2):392–402. https://doi.org/10.1097/ALN.0b013e3182a7cab6

    Article  CAS  PubMed  Google Scholar 

  39. Monti JM (2010) The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med Rev 14(5):319–327. https://doi.org/10.1016/j.smrv.2009.10.003

    Article  PubMed  Google Scholar 

  40. Poulin JF, Caronia G, Hofer C, Cui Q, Helm B, Ramakrishnan C, Chan CS, Dombeck DA, Deisseroth K, Awatramani R (2018) Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci 21(9):1260–1271. https://doi.org/10.1038/s41593-018-0203-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Striano BM, Barker DJ, Pawlak AP, Root DH, Fabbricatore AT, Coffey KR, Stamos JP, West MO (2014) Olfactory tubercle neurons exhibit slow-phasic firing patterns during cocaine self-administration. Synapse 68(7):321–323. https://doi.org/10.1002/syn.21744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Komori T, Matsumoto T, Motomura E, Shiroyama T (2006) The sleep-enhancing effect of valerian inhalation and sleep-shortening effect of lemon inhalation. Chem Senses 31(8):731–737. https://doi.org/10.1093/chemse/bjl015

    Article  CAS  PubMed  Google Scholar 

  43. Sharma R, Sahota P, Thakkar MM (2018) Severe and protracted sleep disruptions in mouse model of post-traumatic stress disorder. Sleep. https://doi.org/10.1093/sleep/zsy003

    Article  PubMed  Google Scholar 

  44. Gervais R (1979) Unilateral lesions of the olfactory tubercle modifying general arousal effects in the rat olfactory bulb. Electroencephalogr Clin Neurophysiol 46(6):665–674. https://doi.org/10.1016/0013-4694(79)90104-4

    Article  CAS  PubMed  Google Scholar 

  45. Benedek G, Obal FJ, Rubicsek G, Obal F (1981) Sleep elicited by olfactory tubercle stimulation and the effect of atropine. Behav Brain Res 2(1):23–32. https://doi.org/10.1016/0166-4328(81)90036-x

    Article  CAS  PubMed  Google Scholar 

  46. Murphy C (1999) Loss of olfactory function in dementing disease. Physiol Behav 66(2):177–182. https://doi.org/10.1016/s0031-9384(98)00262-5

    Article  CAS  PubMed  Google Scholar 

  47. Iranzo A (2013) Parkinson disease and sleep: sleep-wake changes in the premotor stage of Parkinson disease; impaired olfaction and other prodromal features. Curr Neurol Neurosci Rep 13(9):373. https://doi.org/10.1007/s11910-013-0373-0

    Article  PubMed  Google Scholar 

  48. Jennum P, Mayer G, Ju YE, Postuma R (2013) Morbidities in rapid eye movement sleep behavior disorder. Sleep Med 14(8):782–787. https://doi.org/10.1016/j.sleep.2012.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li R, Wang YQ, Liu WY, Zhang MQ, Li L, Cherasse Y, Schiffmann SN, de Kerchove DA, Lazarus M, Qu WM, Huang ZL (2020) Activation of adenosine A2A receptors in the olfactory tubercle promotes sleep in rodents. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2019.107923

    Article  PubMed  Google Scholar 

  50. Monti JM, Jantos H (2018) The effects of local microinjection of selective dopamine D1 and D2 receptor agonists and antagonists into the dorsal raphe nucleus on sleep and wakefulness in the rat. Behav Brain Res. https://doi.org/10.1016/j.bbr.2017.11.006

    Article  PubMed  Google Scholar 

  51. Oishi Y, Suzuki Y, Takahashi K, Yonezawa T, Kanda T, Takata Y, Cherasse Y, Lazarus M (2017) Activation of ventral tegmental area dopamine neurons produces wakefulness through dopamine D2-like receptors in mice. Brain Struct Funct 222(6):2907–2915. https://doi.org/10.1007/s00429-017-1365-7

    Article  CAS  PubMed  Google Scholar 

  52. Kenny JD, Westover MB, Ching S, Brown EN, Solt K (2014) Propofol and sevoflurane induce distinct burst suppression patterns in rats. Front Syst Neurosci. https://doi.org/10.3389/fnsys.2014.00237

    Article  PubMed  PubMed Central  Google Scholar 

  53. Solt K, Cotten JF, Cimenser A, Wong KF, Chemali JJ, Brown EN (2011) Methylphenidate actively induces emergence from general anesthesia. Anesthesiology 115(4):791–803. https://doi.org/10.1097/ALN.0b013e31822e92e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pillay S, Vizuete JA, McCallum JB, Hudetz AG (2011) Norepinephrine infusion into nucleus basalis elicits microarousal in desflurane-anesthetized rats. Anesthesiology 115(4):733–742. https://doi.org/10.1097/ALN.0b013e31822c5ee1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kenny JD, Taylor NE, Brown EN, Solt K (2015) Dextroamphetamine (but Not Atomoxetine) Induces Reanimation from General Anesthesia: Implications for the Roles of Dopamine and Norepinephrine in Active Emergence. PLoS ONE 10(7):e131914. https://doi.org/10.1371/journal.pone.0131914

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.81771819), National key research and development plan of China (Grant No.2017YFC0108803), Key project of Hubei Provincial Health and Health Committee Joint Fund (Project WJ2019H058), Brain resuscitation and functional imaging clinical research center of Wuhan city (Project 2016060605100525), Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University (Grant No. ZNJC201911), Fundamental Research Funds for the Central Universities (2042020kfxg11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Xu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Ao, Y., Liu, Y. et al. Activation of Dopamine Signals in the Olfactory Tubercle Facilitates Emergence from Isoflurane Anesthesia in Mice. Neurochem Res 46, 1487–1501 (2021). https://doi.org/10.1007/s11064-021-03291-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03291-4

Keywords

Navigation