Skip to main content

Advertisement

Log in

Sex-Independent Cognition Improvement in Response to Kaempferol in the Model of Sporadic Alzheimer’s Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is associated with neural oxidative stress and inflammation, and it is assumed to affect more women than men with unknown mechanisms. Kaempferol (KMP) as a potent natural antioxidant has been known to exhibit various biological and pharmacological functions, including antioxidant and anti-inflammatory. We aimed here to evaluate the role of gender difference in response to KMP on the rat model of sporadic AD. Forty-six female and male Wistar rats were divided into six groups of sham, streptozotocin (STZ) + saline (SAL), STZ + KMP. Female rats were ovariectomized, and then all animals received an intracerebroventricular bilateral injection of STZ (3 mg/kg) to induce the AD model. KMP (10 mg/kg) was intraperitoneally administered for 21 consecutive days. Afterward, spatial learning and memory were assessed via the Morris water maze task (MWM). Finally, the hippocampus level of superoxide dismutase (SOD), glutathione, and malondialdehyde were measured using calorimetric kits. Data showed a significant cognition deficit in STZ + SAL compared with the sham. To sum up, we reported that chronic KMP treatment increase significantly improved acquisition and retrieval of spatial memory as evident by longer TTS (total time spent) and short-latency to the platform in MWM. In addition, KMP increased the levels of SOD and glutathione in the hippocampus of rats. Also, KMP decreased hippocampal levels of malondialdehyde in both genders. In conclusion, KMP successfully restores spatial memory impairment independent of gender difference. This memory restoration may at least in part be mediated through boosting the hippocampal level of SOD and glutathione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets and supporting materials generated and/or analyzed during the current study will be available from the corresponding author upon reasonable request.

References

  1. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE (2010) The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS ONE 5(3):e9505

    PubMed  PubMed Central  Google Scholar 

  2. Ou Z, Kong X, Sun X, He X, Zhang L, Gong Z, Huang J, Xu B, Long D, Li J (2018) Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun 69:351–363

    CAS  PubMed  Google Scholar 

  3. Healy SD, Braham SR, Braithwaite VA (1999) Spatial working memory in rats: no differences between the sexes. Proc R Soc Lond B 266(1435):2303–2308

    CAS  Google Scholar 

  4. Rahman Q, Bakare M, Serinsu C (2011) No sex differences in spatial location memory for abstract designs. Brain Cogn 76(1):15–19

    PubMed  Google Scholar 

  5. Koss WA, Frick KM (2017) Sex differences in hippocampal function. J Neurosci Res 95(1–2):539–562

    CAS  PubMed  Google Scholar 

  6. Yagi S, Galea LA (2019) Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology 44(1):200–213

    PubMed  Google Scholar 

  7. Chen W, Liu B, Li X, Wang P, Wang B (2020) Sex differences in spatial memory. Neuroscience 443:140–147

    CAS  PubMed  Google Scholar 

  8. Persson J, Herlitz A, Engman J, Morell A, Sjölie D, Wikström J, Söderlund H (2013) Remembering our origin: gender differences in spatial memory are reflected in gender differences in hippocampal lateralization. Behav Brain Res 256:219–228

    PubMed  Google Scholar 

  9. Klambatsen A, Nygard SK, Chang AJ, Quinones V, Jenab S (2019) Sex differences in memory and intracellular signaling after methamphetamine binge treatment. Brain Res 1711:16–22

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Biasibetti R, dos Santos JPA, Rodrigues L, Wartchow KM, Suardi LZ, Nardin P, Selistre NG, Vázquez D, Gonçalves C-A (2017) Hippocampal changes in STZ-model of Alzheimer’s disease are dependent on sex. Behav Brain Res 316:205–214

    CAS  PubMed  Google Scholar 

  11. Kander MC, Cui Y, Liu Z (2017) Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med 21(5):1024–1032

    PubMed  Google Scholar 

  12. Brunelli E, Domanico F, La Russa D, Pellegrino D (2014) Sex differences in oxidative stress biomarkers. Curr Drug Targets 15(8):811–815

    CAS  PubMed  Google Scholar 

  13. Christen Y (2000) Oxidative stress and Alzheimer disease. Am J Clin Nutr 71(2):621S-629S

    CAS  PubMed  Google Scholar 

  14. Ansari MA, Scheff SW (2010) Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol 69(2):155–167

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mecocci P, Boccardi V, Cecchetti R, Bastiani P, Scamosci M, Ruggiero C, Baroni M (2018) A long journey into aging, brain aging, and Alzheimer’s disease following the oxidative stress tracks. J Alzheimers Dis 62(3):1319–1335

    PubMed  PubMed Central  Google Scholar 

  16. San Tang K (2020) The potential role of nanoyttria in alleviating oxidative stress biomarkers: implications for Alzheimer’s disease therapy. Life Sci. https://doi.org/10.1016/j.lfs.2020.118287

    Article  Google Scholar 

  17. Wojtunik-Kulesza KA, Oniszczuk A, Oniszczuk T, Waksmundzka-Hajnos M (2016) The influence of common free radicals and antioxidants on development of Alzheimer’s Disease. Biomed Pharmacother 78:39–49

    CAS  PubMed  Google Scholar 

  18. Vinitha E, Singh HJ, Kakalij RM, Kshirsagar RP, Kumar BH, Diwan PV (2014) Neuroprotective effect of Prunus avium on streptozotocin induced neurotoxicity in mice. Biomed Prev Nutr 4(4):519–525

    Google Scholar 

  19. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. https://doi.org/10.1155/2013/942916

    Article  PubMed  PubMed Central  Google Scholar 

  20. de Andrade Teles RB, Diniz TC, Costa Pinto TC, de Oliveira Júnior RG, Gama e Silva M, de Lavor ÉM, Fernandes AWC, de Oliveira AP, de Almeida Ribeiro FPR, da Silva AAM (2018) Flavonoids as therapeutic agents in Alzheimer’s and Parkinson’s diseases: a systematic review of preclinical evidences. Oxid Med Cell Longev. https://doi.org/10.1155/2018/7043213

    Article  PubMed  Google Scholar 

  21. Uttara B, Singh AV, Zamboni P, Mahajan R (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rekatsina M, Paladini A, Piroli A, Zis P, Pergolizzi JV, Varrassi G (2020) Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: a narrative review. Adv Ther. https://doi.org/10.1007/s12325-019-01148-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bakhtiari M, Panahi Y, Ameli J, Darvishi B (2017) Protective effects of flavonoids against Alzheimer’s disease-related neural dysfunctions. Biomed Pharmacother 93:218–229

    CAS  PubMed  Google Scholar 

  24. Kumar S, Mishra A, Pandey AK (2013) Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC Complement Altern Med 13(1):120

    PubMed  PubMed Central  Google Scholar 

  25. Rop O, Sochor J, Jurikova T, Zitka O, Skutkova H, Mlcek J, Salas P, Krska B, Babula P, Adam V (2011) Effect of five different stages of ripening on chemical compounds in medlar (Mespilus germanica L.). Molecules 16(1):74–91

    CAS  Google Scholar 

  26. Kouhestani S, Jafari A, Babaei P (2018) Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural Regen Res 13(10):1827

    PubMed  Google Scholar 

  27. Pan X, Liu X, Zhao H, Wu B, Liu G (2020) Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. J Funct Foods 74:104140

    CAS  Google Scholar 

  28. Calderon-Montano JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M (2011) A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11(4):298–344

    PubMed  Google Scholar 

  29. Yang E-J, Kim G-S, Jun M, Song K-S (2014) Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells. Food Funct 5(7):1395–1402

    CAS  PubMed  Google Scholar 

  30. Zarei M, Mohammadi S, Jabbari S, Shahidi S (2019) Intracerebroventricular microinjection of kaempferol on memory retention of passive avoidance learning in rats: involvement of cholinergic mechanism (s). Int J Neurosci 129(12):1203–1212

    CAS  PubMed  Google Scholar 

  31. El Sayed NS, Ghoneum MH (2020) Antia, a natural antioxidant product, attenuates cognitive dysfunction in streptozotocin-induced mouse model of sporadic Alzheimer’s disease by targeting the amyloidogenic, inflammatory, autophagy, and oxidative stress pathways. Oxid Med Cell Longev. https://doi.org/10.1155/2020/4386562

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fayaz E, Damirchi A, Zebardast N, Babaei P (2019) Cinnamon extract combined with high-intensity endurance training alleviates metabolic syndrome via non-canonical WNT signaling. Nutrition 65:173–178

    CAS  PubMed  Google Scholar 

  33. Agrawal R, Tyagi E, Shukla R, Nath C (2011) Insulin receptor signaling in rat hippocampus: a study in STZ (ICV) induced memory deficit model. Eur Neuropsychopharmacol 21(3):261–273

    CAS  PubMed  Google Scholar 

  34. Chen J, Gao L, Zhang Y, Su Y, Kong Z, Wang D, Yan M (2020) Acteoside-improved streptozotocin-induced learning and memory impairment by upregulating hippocampal insulin, glucose transport, and energy metabolism. Phytother Res. https://doi.org/10.1002/ptr.6811

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhou M, Chen S, Peng P, Gu Z, Yu J, Zhao G, Deng Y (2019) Dulaglutide ameliorates STZ induced AD-like impairment of learning and memory ability by modulating hyperphosphorylation of tau and NFs through GSK3β. Biochem Biophys Res Commun 511(1):154–160

    CAS  PubMed  Google Scholar 

  36. Dalli T, Beker M, Terzioglu-Usak S, Akbas F, Elibol B (2018) Thymoquinone activates MAPK pathway in hippocampus of streptozotocin-treated rat model. Biomed Pharmacother 99:391–401

    CAS  PubMed  Google Scholar 

  37. Bassani TB, Bonato JM, Machado MM, Cóppola-Segovia V, Moura EL, Zanata SM, Oliveira RM, Vital MA (2018) Decrease in adult neurogenesis and neuroinflammation are involved in spatial memory impairment in the streptozotocin-induced model of sporadic Alzheimer’s disease in rats. Mol Neurobiol 55(5):4280–4296

    CAS  PubMed  Google Scholar 

  38. Luo H, Xiang Y, Qu X, Liu H, Liu C, Li G, Han L, Qin X (2019) Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of BDNF-TrkB signaling pathway. Front Pharmacol 10:395

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Agrawal M, Perumal Y, Bansal S, Arora S, Chopra K (2020) Phycocyanin alleviates ICV-STZ induced cognitive and molecular deficits via PI3-Kinase dependent pathway. Food Chem Toxicol 145:111684

    CAS  PubMed  Google Scholar 

  40. Bao J, Mahaman YA, Liu R, Wang J-Z, Zhang Z, Zhang B, Wang X (2017) Sex differences in the cognitive and hippocampal effects of streptozotocin in an animal model of sporadic AD. Front Aging Neurosci 9:347

    PubMed  PubMed Central  Google Scholar 

  41. Babaei P, Shirkouhi SG, Hosseini R, Tehrani BS (2017) Vitamin D is associated with metabotropic but not neurotrophic effects of exercise in ovariectomized rats. Diabetol Metab Syndr 9(1):1–9

    Google Scholar 

  42. López-Sánchez C, Martín-Romero FJ, Sun F, Luis L, Samhan-Arias AK, García-Martínez V, Gutiérrez-Merino C (2007) Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusion-induced damage in rat brain. Brain Res 1182:123–137

    PubMed  Google Scholar 

  43. Li S, Pu X-P (2011) Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Biol Pharm Bull 34(8):1291–1296

    CAS  PubMed  Google Scholar 

  44. Al-Numair KS, Chandramohan G, Veeramani C, Alsaif MA (2015) Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep 20(5):198–209

    CAS  PubMed  Google Scholar 

  45. El-kott AF, Abd-El-Karim M, Khalifa HS, Morsy K, Ibrahim EH, Bin-Jumah M, Abdel-Daim MM, Aleya L (2020) Kaempferol protects against cadmium chloride-induced hippocampal damage and memory deficits by activation of silent information regulator 1 and inhibition of poly (ADP-Ribose) polymerase-1. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.138832

    Article  PubMed  Google Scholar 

  46. Zhang R, Ai X, Duan Y, Xue M, He W, Wang C, Xu T, Xu M, Liu B, Li C (2017) Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways. Biomed Pharmacother 89:660–672

    CAS  PubMed  Google Scholar 

  47. Hawley WR, Grissom EM, Barratt HE, Conrad TS, Dohanich GP (2012) The effects of biological sex and gonadal hormones on learning strategy in adult rats. Physiol Behav 105(4):1014–1020

    CAS  PubMed  Google Scholar 

  48. Grissom EM, Hawley WR, Hodges KS, Fawcett-Patel JM, Dohanich GP (2013) Biological sex influences learning strategy preference and muscarinic receptor binding in specific brain regions of prepubertal rats. Hippocampus 23(4):313–322

    CAS  PubMed  Google Scholar 

  49. Jones CM, Healy SD (2006) Differences in cue use and spatial memory in men and women. Proc R Soc B 273(1598):2241–2247

    PubMed  Google Scholar 

  50. Yagi S, Drewczynski D, Wainwright SR, Barha CK, Hershorn O, Galea LA (2017) Sex and estrous cycle differences in immediate early gene activation in the hippocampus and the dorsal striatum after the cue competition task. Horm Behav 1(87):69–79

    Google Scholar 

Download references

Funding

This study was supported by a grant from Research and Technology Chancellor of Guilan University of Medical Sciences, Iran (No. IR. GUMS. REC. 1936.51). The funder did not participate in data collection and analysis, paper writing, or submission.

Author information

Authors and Affiliations

Authors

Contributions

PB designed this study, performed experiments, wrote and revised the paper for important intellectual content. KE performed experiments and read the manuscript. SK performed experiments, statistical analysis, and participated in paper writing. All authors approved the final version of the paper.

Corresponding author

Correspondence to Somayeh Kouhestani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

Experiments were conducted according to the National Institutes of Health guide for the care and use of laboratory animals (NIH Publications No. 8023, revised 1978) and was approved by the ethics committee of Guilan University of Medical Sciences, Rasht, Iran (IR.GUMS.REC.1396.51).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaei, P., Eyvani, K. & Kouhestani, S. Sex-Independent Cognition Improvement in Response to Kaempferol in the Model of Sporadic Alzheimer’s Disease. Neurochem Res 46, 1480–1486 (2021). https://doi.org/10.1007/s11064-021-03289-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03289-y

Keywords

Navigation