Skip to main content

Advertisement

Log in

Inhibition of Urea Transporter (UT)-B Modulates LPS-Induced Inflammatory Responses in BV2 Microglia and N2a Neuroblastoma Cells

  • Brief Communication
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Urea is the major nitrogen-containing product of protein metabolism, and the urea cycle is intrinsically linked to nitric oxide (NO) production via the common substrate L-arginine. Urea accumulates in the brain in neurodegenerative states, including Alzheimer’s and Huntington’s disease. Urea transporter B (UT-B, SLC14A1) is the primary transport protein for urea in the CNS, identified most abundantly in astrocytes. Moreover, enhanced expression of the Slc14a1 gene has been reported under neurodegenerative conditions. While the role of UT-B in disease pathology remains unclear, UT-B-deficient mice display behavioural impairment coupled with urea accumulation, NO disruption and neuronal loss. Recognising the role of inflammation in neurodegenerative disease pathology, the current short study evaluates the role of UT-B in regulating inflammatory responses. Using the specific inhibitor UTBinh-14, we investigated the impact of UT-B inhibition on LPS-induced changes in BV2 microglia and N2a neuroblastoma cells. We found that UTBinh-14 significantly attenuated LPS-induced production of TNFα and IL-6 from BV2 cells, accompanied by reduced release of NO. While we observed a similar reduction in supernatant concentration of IL-6 from N2a cells, the LPS-stimulated NO release was further augmented by UTBinh-14. These changes were accompanied by a small, but significant downregulation in UT-B expression in both cell types following incubation with LPS, which was not restored by UTBinh-14. Taken together, the current evidence implicates UT-B in regulation of inflammatory responses in microglia and neuronal-like cells. Moreover, our findings offer support for the further investigation of UT-B as a novel therapeutic target for neuroinflammatory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Berger UV, Tsukaguchi H, Hediger MA (1998) Distribution of mRNA for the facilitated urea transporter UT3 in the rat nervous system. Anat Embryol (Berl) 197(5):405–414. https://doi.org/10.1007/s004290050152

    Article  CAS  Google Scholar 

  2. Trinh-Trang-Tan MM, Cartron JP, Bankir L (2005) Molecular basis for the dialysis disequilibrium syndrome: altered aquaporin and urea transporter expression in the brain. Nephrol Dial Transplant 20(9):1984–1988. https://doi.org/10.1093/ndt/gfh877

    Article  CAS  PubMed  Google Scholar 

  3. Handley RR, Reid SJ, Brauning R, Maclean P, Mears ER, Fourie I, Patassini S, Cooper GJS, Rudiger SR, McLaughlan CJ, Verma PJ, Gusella JF, MacDonald ME, Waldvogel HJ, Bawden CS, Faull RLM, Snell RG (2017) Brain urea increase is an early Huntington’s disease pathogenic event observed in a prodromal transgenic sheep model and HD cases. Proc Natl Acad Sci U S A 114(52):E11293–E11302. https://doi.org/10.1073/pnas.1711243115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hansmannel F, Sillaire A, Kamboh MI, Lendon C, Pasquier F, Hannequin D, Laumet G, Mounier A, Ayral AM, DeKosky ST, Hauw JJ, Berr C, Mann D, Amouyel P, Campion D, Lambert JC (2010) Is the urea cycle involved in Alzheimer’s disease? J Alzheimers Dis 21(3):1013–1021. https://doi.org/10.3233/JAD-2010-100630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Polis B, Srikanth KD, Elliott E, Gil-Henn H, Samson AO (2018) L-Norvaline reverses cognitive decline and synaptic loss in a murine model of alzheimer’s disease. Neurotherapeutics 15(4):1036–1054. https://doi.org/10.1007/s13311-018-0669-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu J, Begley P, Church SJ, Patassini S, Hollywood KA, Jullig M, Curtis MA, Waldvogel HJ, Faull RL, Unwin RD (1862) Cooper GJ (2016) Graded perturbations of metabolism in multiple regions of human brain in Alzheimer’s disease: Snapshot of a pervasive metabolic disorder. Biochim Biophys Acta 6:1084–1092. https://doi.org/10.1016/j.bbadis.2016.03.001

    Article  CAS  Google Scholar 

  7. Liu P, Fleete MS, Jing Y, Collie ND, Curtis MA, Waldvogel HJ, Faull RL, Abraham WC, Zhang H (2014) Altered arginine metabolism in Alzheimer’s disease brains. Neurobiol Aging 35(9):1992–2003. https://doi.org/10.1016/j.neurobiolaging.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  8. Wiesinger H (2001) Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog Neurobiol 64(4):365–391. https://doi.org/10.1016/s0301-0082(00)00056-3

    Article  CAS  PubMed  Google Scholar 

  9. Zhang YQ, Tang YB, Dammer E, Liu JR, Zhao YW, Zhu L, Ren RJ, Chen HZ, Wang G, Cheng Q (2019) Dysregulated urinary arginine metabolism in older adults with amnestic mild cognitive impairment. Front Aging Neurosci 11:90. https://doi.org/10.3389/fnagi.2019.00090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stewart G (2011) The emerging physiological roles of the SLC14A family of urea transporters. Br J Pharmacol 164(7):1780–1792. https://doi.org/10.1111/j.1476-5381.2011.01377.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lucien N, Bruneval P, Lasbennes F, Belair MF, Mandet C, Cartron J, Bailly P, Trinh-Trang-Tan MM (2005) UT-B1 urea transporter is expressed along the urinary and gastrointestinal tracts of the mouse. Am J Physiol Regul Integr Comp Physiol 288(4):R1046-1056. https://doi.org/10.1152/ajpregu.00286.2004

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Ran J, Zhou H, Lei T, Zhou L, Han J, Yang B (2012) Mice lacking urea transporter UT-B display depression-like behavior. J Mol Neurosci 46(2):362–372. https://doi.org/10.1007/s12031-011-9594-3

    Article  CAS  PubMed  Google Scholar 

  13. Ogami A, Miyazaki H, Niisato N, Sugimoto T, Marunaka Y (2006) UT-B1 urea transporter plays a noble role as active water transporter in C6 glial cells. Biochem Biophys Res Commun 351(3):619–624. https://doi.org/10.1016/j.bbrc.2006.10.097

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A, Tucker A, Weissman IL, Chang EF, Li G, Grant GA, Hayden Gephart MG, Barres BA (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 113(12):E1738-1746. https://doi.org/10.1073/pnas.1525528113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patassini S, Begley P, Reid SJ, Xu J, Church SJ, Curtis M, Dragunow M, Waldvogel HJ, Unwin RD, Snell RG, Faull RL, Cooper GJ (2015) Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington’s disease. Biochem Biophys Res Commun 468(1–2):161–166. https://doi.org/10.1016/j.bbrc.2015.10.140

    Article  CAS  PubMed  Google Scholar 

  17. Santiago JA, Potashkin JA (2015) Blood biomarkers associated with cognitive decline in early stage and drug-naive parkinson’s disease patients. PLoS ONE 10(11):e0142582. https://doi.org/10.1371/journal.pone.0142582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Recabarren D, Alarcon M (2017) Gene networks in neurodegenerative disorders. Life Sci 183:83–97. https://doi.org/10.1016/j.lfs.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  19. Castillo E, Leon J, Mazzei G, Abolhassani N, Haruyama N, Saito T, Saido T, Hokama M, Iwaki T, Ohara T, Ninomiya T, Kiyohara Y, Sakumi K, LaFerla FM, Nakabeppu Y (2017) Comparative profiling of cortical gene expression in Alzheimer’s disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Sci Rep 7(1):17762. https://doi.org/10.1038/s41598-017-17999-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Labzin LI, Heneka MT, Latz E (2018) Innate immunity and neurodegeneration. Annu Rev Med 69:437–449. https://doi.org/10.1146/annurev-med-050715-104343

    Article  CAS  PubMed  Google Scholar 

  21. Howe AM, Cosgrave A, O’Murchu M, Britchfield C, Mulvagh A, Fernandez-Perez I, Dykstra M, Jones AC, Costello DA (2020) Characterising lipoteichoic acid as an in vitro model of acute neuroinflammation. Int Immunopharmacol 85:106619. https://doi.org/10.1016/j.intimp.2020.106619

    Article  CAS  PubMed  Google Scholar 

  22. Yao C, Anderson MO, Zhang J, Yang B, Phuan PW, Verkman AS (2012) Triazolothienopyrimidine inhibitors of urea transporter UT-B reduce urine concentration. J Am Soc Nephrol 23(7):1210–1220. https://doi.org/10.1681/ASN.2011070751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walpole C, Farrell A, McGrane A, Stewart GS (2014) Expression and localization of a UT-B urea transporter in the human bladder. Am J Physiol Renal Physiol 307(9):F1088-1094. https://doi.org/10.1152/ajprenal.00284.2014

    Article  CAS  PubMed  Google Scholar 

  24. Farrell A, Stewart G (2019) Osmotic regulation of UT-B urea transporters in the RT4 human urothelial cell line. Physiol Rep 7(24):e14314. https://doi.org/10.14814/phy2.14314

    Article  PubMed  PubMed Central  Google Scholar 

  25. Evangelopoulos ME, Weis J, Kruttgen A (2005) Signalling pathways leading to neuroblastoma differentiation after serum withdrawal: HDL blocks neuroblastoma differentiation by inhibition of EGFR. Oncogene 24(20):3309–3318. https://doi.org/10.1038/sj.onc.1208494

    Article  CAS  PubMed  Google Scholar 

  26. Costello DA, Lyons A, Denieffe S, Browne TC, Cox FF, Lynch MA (2011) Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for Toll-like receptor activation. J Biol Chem 286(40):34722–34732. https://doi.org/10.1074/jbc.M111.280826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Costello DA, Watson MB, Cowley TR, Murphy N, Murphy Royal C, Garlanda C, Lynch MA (2011) Interleukin-1alpha and HMGB1 mediate hippocampal dysfunction in SIGIRR-deficient mice. J Neurosci 31(10):3871–3879. https://doi.org/10.1523/JNEUROSCI.6676-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA, Chigurupati S, Ouyang X, Magnus T, Camandola S, Mattson MP (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104(34):13798–13803. https://doi.org/10.1073/pnas.0702553104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Acosta C, Davies A (2008) Bacterial lipopolysaccharide regulates nociceptin expression in sensory neurons. J Neurosci Res 86(5):1077–1086. https://doi.org/10.1002/jnr.21565

    Article  CAS  PubMed  Google Scholar 

  30. Okun E, Griffioen KJ, Mattson MP (2011) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34(5):269–281. https://doi.org/10.1016/j.tins.2011.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reis K, Halldin J, Fernaeus S, Pettersson C, Land T (2006) NADPH oxidase inhibitor diphenyliodonium abolishes lipopolysaccharide-induced down-regulation of transferrin receptor expression in N2a and BV-2 cells. J Neurosci Res 84(5):1047–1052. https://doi.org/10.1002/jnr.21005

    Article  CAS  PubMed  Google Scholar 

  32. Liu YC, Gao XX, Chen L, You XQ (2017) Rapamycin suppresses Abeta25-35- or LPS-induced neuronal inflammation via modulation of NF-kappaB signaling. Neuroscience 355:188–199. https://doi.org/10.1016/j.neuroscience.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  33. Yuan X, Hu T, He H, Qiu H, Wu X, Chen J, Wang M, Chen C, Huang S (2018) Respiratory syncytial virus prolifically infects N2a neuronal cells, leading to TLR4 and nucleolin protein modulations and RSV F protein co-localization with TLR4 and nucleolin. J Biomed Sci 25(1):13. https://doi.org/10.1186/s12929-018-0416-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Balschun D, Wetzel W, Del Rey A, Pitossi F, Schneider H, Zuschratter W, Besedovsky HO (2004) Interleukin-6: a cytokine to forget. FASEB J 18(14):1788–1790. https://doi.org/10.1096/fj.04-1625fje

    Article  CAS  PubMed  Google Scholar 

  35. Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements JM, Crimmin M, Davidson AH, Drummond AH, Galloway WA, Gilbert R et al (1995) Matrix metalloproteinases and processing of pro-TNF-alpha. J Leukoc Biol 57(5):774–777. https://doi.org/10.1002/jlb.57.5.774

    Article  CAS  PubMed  Google Scholar 

  36. Minogue AM, Barrett JP, Lynch MA (2012) LPS-induced release of IL-6 from glia modulates production of IL-1beta in a JAK2-dependent manner. J Neuroinflammation 9:126. https://doi.org/10.1186/1742-2094-9-126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shieh CH, Heinrich A, Serchov T, van Calker D, Biber K (2014) P2X7-dependent, but differentially regulated release of IL-6, CCL2, and TNF-alpha in cultured mouse microglia. Glia 62(4):592–607. https://doi.org/10.1002/glia.22628

    Article  PubMed  Google Scholar 

  38. Chou YC, Sheu JR, Chung CL, Hsiao CJ, Hsueh PJ (1810) Hsiao G (2011) Hypertonicity-enhanced TNF-alpha release from activated human monocytic THP-1 cells requires ERK activation. Biochim Biophys Acta 4:475–484. https://doi.org/10.1016/j.bbagen.2011.01.004

    Article  CAS  Google Scholar 

  39. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8(10):766–775. https://doi.org/10.1038/nrn2214

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

A portion of this work was supported by the Jack Pickard Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

A.C.J conducted the experiments, wrote and edited the manuscript. F.P. carried out PCR analysis. G.S.S contributed to study conception and design, edited and revised the manuscript. D.A.C conceived the study, supervised the work, analysed data, wrote and edited the manuscript.

Corresponding author

Correspondence to Derek A. Costello.

Ethics declarations

Conflict of interest

The authors declare no conflicts or competing interests in this work.

Ethical Approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent to publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, A.C., Pinki, F., Stewart, G.S. et al. Inhibition of Urea Transporter (UT)-B Modulates LPS-Induced Inflammatory Responses in BV2 Microglia and N2a Neuroblastoma Cells. Neurochem Res 46, 1322–1329 (2021). https://doi.org/10.1007/s11064-021-03283-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03283-4

Keywords

Navigation