Skip to main content

Advertisement

Log in

Protective Effects of Aquaporin-4 Deficiency on Longer-term Neurological Outcomes in a Mouse Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) has been a crucial health problem, with more than 50 million patients worldwide each year. Glymphatic system is a fluid exchange system that relies on the polarized water channel aquaporin-4 (AQP4) at the astrocytes, accounting for the clearance of abnormal proteins and metabolites from brain tissues. However, the dysfunction of glymphatic system and alteration of AQP4 polarization during the progression of TBI remain unclear. AQP4−/− and Wild Type (WT) mice were used to establish the TBI mouse model respectively. Brain edema and Evans blue extravasation were conducted 24 h post-injury to evaluate the acute TBI. Morris water maze (MWM) was used to establish the long-term cognitive functions of AQP4−/− and WT mice post TBI. Western-blot and qRT-PCR assays were performed to demonstrate protective effects of AQP4 deficiency to blood–brain barrier (BBB) integrity and amyloid-β clearance. The inflammation of cerebral tissues post TBI was estimated by ELISA assay. AQP4 deficiency alleviated the brain edema and neurological deficit in TBI mice. AQP4-knockout led to improved cognitive outcomes in mice post TBI. The BBB integrity and cerebral amyloid-β clearance were protected by AQP4 deficiency in TBI mice. AQP4 deficiency ameliorated the TBI-induced inflammation. AQP4 deficiency improved longer-term neurological outcomes in a mouse model of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zeiler FA, Ercole A, Czosnyka M, Smielewski P, Hawryluk G, Hutchinson PJA, Menon DK (2020) Aries M (2020) Continuous cerebrovascular reactivity monitoring in moderate/severe traumatic brain injury: a narrative review of advances in neurocritical care. Br J Anaesth 124(4):440–453

    Article  Google Scholar 

  2. Stein DM, Feather CB, Napolitano LM (2017) traumatic brain injury advances. Crit Care Clin 33:1–13

    Article  Google Scholar 

  3. Araki T, Yokota H, Morita A (2017) Pediatric traumatic brain injury: characteristic features, diagnosis, and management. Neurol Med Chir (Tokyo) 57:82–93

    Article  Google Scholar 

  4. Majdan M, Plancikova D, Brazinova A, Rusnak M, Nieboer D, Feigin V, Maas A (2016) Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Health 1:e76–e83

    Article  Google Scholar 

  5. Popernack ML, Gray N, Reuter-Rice K (2015) Moderate-to-severe traumatic brain injury in children: complications and rehabilitation strategies. J Pediatr Health Care 29:e1-7

    Article  Google Scholar 

  6. Plog BA, Nedergaard M (2018) The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol 13:379–394

    Article  CAS  Google Scholar 

  7. Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J (2019) The glymphatic system and waste clearance with brain aging: a review. Gerontology 65:106–119

    Article  Google Scholar 

  8. Jessen NA, Munk AS, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem Res 40:2583–2599

    Article  CAS  Google Scholar 

  9. Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W, Pu T, Monai H, Murlidharan G, Castellanos Rivera RM, Simon MJ, Pike MM, Pla V, Du T, Kress BT, Wang X, Plog BA, Thrane AS, Lundgaard I, Abe Y, Yasui M, Thomas JH, Xiao M, Hirase H, Asokan A, Iliff JJ, Nedergaard M (2018) Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife. https://doi.org/10.7554/eLife.40070

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mortensen KN, Sanggaard S, Mestre H, Lee H, Kostrikov S, Xavier ALR, Gjedde A, Benveniste H, Nedergaard M (2019) Impaired glymphatic transport in spontaneously hypertensive rats. J Neurosci 39:6365–6377

    Article  CAS  Google Scholar 

  11. Hubbard JA, Szu JI, Binder DK (2018) The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull 136:118–129

    Article  CAS  Google Scholar 

  12. Katada R, Akdemir G, Asavapanumas N, Ratelade J, Zhang H, Verkman AS (2014) Greatly improved survival and neuroprotection in aquaporin-4-knockout mice following global cerebral ischemia. FASEB J 28:705–714

    Article  CAS  Google Scholar 

  13. Gardner RC, Byers AL, Barnes DE, Li Y, Boscardin J, Yaffe K (2018) Mild TBI and risk of Parkinson disease: a chronic effects of neurotrauma consortium study. Neurology 90:e1771–e1779

    Article  Google Scholar 

  14. Yuan F, Xu ZM, Lu LY, Nie H, Ding J, Ying WH, Tian HL (2016) SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-kappaB p65 acetylation and activation. J Neurochem 136:581–593

    Article  CAS  Google Scholar 

  15. Araki Y, Yokoyama K, Uda K, Kanamori F, Kurimoto M, Shiba Y, Mamiya T, Nishihori M, Izumi T, Sumitomo M, Okamoto S, Matsui K, Emoto R, Wakabayashi T, Matsui S, Natsume A (2021) Postoperative stroke and neurological outcomes in the early phase after revascularization surgeries for moyamoya disease: an age-stratified comparative analysis. Neurosurg Rev. https://doi.org/10.1007/s10143-020-01459-0

    Article  PubMed  Google Scholar 

  16. He XF, Liu DX, Zhang Q, Liang FY, Dai GY, Zeng JS, Pei Z, Xu GQ, Lan Y (2017) Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice. Front Mol Neurosci 10:144

    Article  Google Scholar 

  17. Donnelly JE, Young AMH, Brady K (2017) Autoregulation in paediatric TBI-current evidence and implications for treatment. Childs Nerv Syst 33:1735–1744

    Article  Google Scholar 

  18. Bomyea J, Lang AJ, Schnurr PP (2017) TBI and Treatment response in a randomized trial of acceptance and commitment therapy. J Head Trauma Rehabil 32:E35–E43

    Article  Google Scholar 

  19. Miles SR, Harik JM, Hundt NE, Mignogna J, Pastorek NJ, Thompson KE, Freshour JS, Yu HJ, Cully JA (2017) Delivery of mental health treatment to combat veterans with psychiatric diagnoses and TBI histories. PLoS ONE 12:e0184265

    Article  Google Scholar 

  20. Wang Y, Liu Y, Lopez D, Lee M, Dayal S, Hurtado A, Bi X, Baudry M (2018) Protection against TBI-induced neuronal death with post-treatment with a selective Calpain-2 inhibitor in mice. J Neurotrauma 35:105–117

    Article  Google Scholar 

  21. Oberholzer M, Muri RM (2019) Neurorehabilitation of Traumatic Brain Injury (TBI): a clinical review. Med Sci (Basel). https://doi.org/10.3390/medsci7030047

    Article  Google Scholar 

  22. Noggle CA, Pierson EE (2010) The path ahead: future trends in the assessment and treatment of TBI in the pediatric population. Appl Neuropsychol 17:123–124

    Article  Google Scholar 

  23. Shi S, Liang D, Bao M, Xie Y, Xu W, Wang L, Wang Z, Qiao Z (2016) Gx-50 inhibits neuroinflammation via alpha7 nAChR activation of the JAK2/STAT3 and PI3K/AKT pathways. J Alzheimers Dis 50:859–871

    Article  CAS  Google Scholar 

  24. Simon DW, McGeachy MJ, Bayir H, Clark RS, Loane DJ, Kochanek PM (2017) The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 13:171–191

    Article  Google Scholar 

  25. Xiong Y, Mahmood A, Chopp M (2018) Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 21:137–151

    Article  Google Scholar 

  26. Biswas S, Bellare J (2020) Adaptive mechanisms induced by sparingly soluble mercury sulfide (HgS) in zebrafish: behavioural and proteomics analysis. Chemosphere 270:129438

    Article  Google Scholar 

  27. Gluchowska K, Pliszka M, Szablewski L (2021) Expression of glucose transporters in human neurodegenerative diseases. Biochem Biophys Res Commun 540:8–15

    Article  CAS  Google Scholar 

  28. Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33:18190–18199

    Article  CAS  Google Scholar 

  29. Iliff J, Simon M (2019) CrossTalk proposal: the glymphatic system supports convective exchange of cerebrospinal fluid and brain interstitial fluid that is mediated by perivascular aquaporin-4. J Physiol 597:4417–4419

    Article  CAS  Google Scholar 

  30. Goodman JR, Iliff JJ (2020) Vasomotor influences on glymphatic-lymphatic coupling and solute trafficking in the central nervous system. J Cereb Blood Flow Metab 40:1724–1734

    Article  CAS  Google Scholar 

  31. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Nedergaard M (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34:16180–16193

    Article  Google Scholar 

  32. Gatson JW, Warren V, Abdelfattah K, Wolf S, Hynan LS, Moore C, Diaz-Arrastia R, Minei JP, Madden C, Wigginton JG (2013) Detection of beta-amyloid oligomers as a predictor of neurological outcome after brain injury. J Neurosurg 118:1336–1342

    Article  CAS  Google Scholar 

  33. Marklund N, Farrokhnia N, Hanell A, Vanmechelen E, Enblad P, Zetterberg H, Blennow K, Hillered L (2014) Monitoring of beta-amyloid dynamics after human traumatic brain injury. J Neurotrauma 31:42–55

    Article  Google Scholar 

  34. Ayton S, Zhang M, Roberts BR, Lam LQ, Lind M, McLean C, Bush AI, Frugier T, Crack PJ, Duce JA (2014) Ceruloplasmin and beta-amyloid precursor protein confer neuroprotection in traumatic brain injury and lower neuronal iron. Free Radic Biol Med 69:331–337

    Article  CAS  Google Scholar 

  35. Miszczuk D, Debski KJ, Tanila H, Lukasiuk K, Pitkanen A (2016) Traumatic brain injury increases the expression of Nos1, abeta clearance, and epileptogenesis in APP/PS1 mouse model of Alzheimer’s disease. Mol Neurobiol 53:7010–7027

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Natural Science Foundation of Hebei Province, China (H2018206325 and H2020206543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Yang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xie, Y., Wan, X. et al. Protective Effects of Aquaporin-4 Deficiency on Longer-term Neurological Outcomes in a Mouse Model. Neurochem Res 46, 1380–1389 (2021). https://doi.org/10.1007/s11064-021-03272-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03272-7

Keywords

Navigation