Skip to main content
Log in

Lipopolysaccharide-Induced Microglial Neuroinflammation: Attenuation by FK866

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alleviating microglia-mediated neuroinflammation bears great promise to reduce neurodegeneration. Nicotinamide phosphoribosyltransferase (NAMPT) may exert cytokine-like effect in the brain. However, it remains unclear about role of NAMPT in microglial inflammation. Also, it remains unknown about effect of NAMPT inhibition on microglial inflammation. In the present study, we observed that FK866 (a specific noncompetitive NAMPT inhibitor) dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory mediator (interleukin (IL)-6, IL-1β, inducible nitric oxide synthase, nitric oxide and reactive species) level increase in BV2 microglia cultures. FK866 also significantly inhibited LPS-induced polarization change in microglia. Furthermore, LPS significantly increased NAMPT expression and nuclear factor kappa B (NF-κB) phosphorylation in microglia. FK866 significantly decreased NAMPT expression and NF-κB phosphorylation in LPS-treated microglia. Finally, conditioned medium from microglia cultures co-treated with FK866 and LPS significantly increased SH-SY5Y and PC12 cell viability compared with conditioned medium from microglia cultures treated with LPS alone. Our study strongly indicates that NAMPT may be a promising target for microglia modulation and NAMPT inhibition may attenuate microglial inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Vymetalova L, Kucirkova T, Knopfova L, Pospisilova V, Kasko T, Lejdarova H, Makaturova E, Kuglik P, Oralova V, Matalova E, Benes P, Koristek Z, Forostyak S (2020) Large-scale automated hollow-fiber bioreactor expansion of umbilical cord-derived human mesenchymal stromal cells for neurological disorders. Neurochem Res 45(1):204–214. https://doi.org/10.1007/s11064-019-02925-y

    Article  CAS  PubMed  Google Scholar 

  2. Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM (2014) Inflammation in neurodegenerative diseases–an update. Immunology 142(2):151–166. https://doi.org/10.1111/imm.12233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ozben T, Ozben S (2019) Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin Biochem 72:87–89. https://doi.org/10.1016/j.clinbiochem.2019.04.001

    Article  CAS  PubMed  Google Scholar 

  4. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783. https://doi.org/10.1126/science.aag2590

    Article  CAS  PubMed  Google Scholar 

  5. Stephenson J, Nutma E, van der Valk P, Amor S (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154(2):204–219. https://doi.org/10.1111/imm.12922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geng C, Wei J, Wu C (2019) Mammalian STE20-like kinase 1 knockdown attenuates TNFα-mediated neurodegenerative disease by repressing the JNK pathway and mitochondrial stress. Neurochem Res 44(7):1653–1664. https://doi.org/10.1007/s11064-019-02791-8

    Article  CAS  PubMed  Google Scholar 

  7. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468. https://doi.org/10.1146/annurev-immunol-051116-052358

    Article  CAS  PubMed  Google Scholar 

  8. Gelders G, Baekelandt V, Van der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018:4784268. https://doi.org/10.1155/2018/4784268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chu F, Shi M, Zheng C, Shen D, Zhu J, Zheng X, Cui L (2018) The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 318:1–7. https://doi.org/10.1016/j.jneuroim.2018.02.015

    Article  CAS  PubMed  Google Scholar 

  10. Nishimura Y, Moriyama M, Kawabe K, Satoh H, Takano K, Azuma YT, Nakamura Y (2018) Lauric acid alleviates neuroinflammatory responses by activated microglia: involvement of the gpr40-dependent pathway. Neurochem Res 43(9):1723–1735. https://doi.org/10.1007/s11064-018-2587-7

    Article  CAS  PubMed  Google Scholar 

  11. Kocur M, Schneider R, Pulm AK, Bauer J, Kropp S, Gliem M, Ingwersen J, Goebels N, Alferink J, Prozorovski T, Aktas O, Scheu S (2015) IFNβ secreted by microglia mediates clearance of myelin debris in CNS autoimmunity. Acta Neuropathologica Commun 3:20. https://doi.org/10.1186/s40478-015-0192-4

    Article  CAS  Google Scholar 

  12. Sanchez-Guajardo V, Tentillier N, Romero-Ramos M (2015) The relation between alpha-synuclein and microglia in Parkinson’s disease: recent developments. Neuroscience 302:47–58. https://doi.org/10.1016/j.neuroscience.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  13. Long H, Zhong G, Wang C, Zhang J, Zhang Y, Luo J, Shi S (2019) TREM2 attenuates Aβ1-42-mediated neuroinflammation in BV-2 cells by down regulating TLR signaling. Neurochem Res 44(8):1830–1839. https://doi.org/10.1007/s11064-019-02817-1

    Article  CAS  PubMed  Google Scholar 

  14. Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I (1994) Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol 14(2):1431–1437. https://doi.org/10.1128/mcb.14.2.1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307(5708):426–430. https://doi.org/10.1126/science.1097243

    Article  CAS  PubMed  Google Scholar 

  16. Yoshino J, Mills KF, Yoon MJ, Imai S (2011) Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 14(4):528–536. https://doi.org/10.1016/j.cmet.2011.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang P, Li WL, Liu JM, Miao CY (2016) NAMPT and NAMPT-controlled NAD metabolism in vascular repair. J Cardiovasc Pharmacol 67(6):474–481. https://doi.org/10.1097/fjc.0000000000000332

    Article  CAS  PubMed  Google Scholar 

  18. Garten A, Schuster S, Penke M, Gorski T, de Giorgis T, Kiess W (2015) Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nature Rev Endocrinol 11(9):535–546. https://doi.org/10.1038/nrendo.2015.117

    Article  CAS  Google Scholar 

  19. Nowell M, Evans L, Williams A (2012) PBEF/NAMPT/visfatin: a promising drug target for treating rheumatoid arthritis? Future Med Chem 4(6):751–769. https://doi.org/10.4155/fmc.12.34

    Article  CAS  PubMed  Google Scholar 

  20. Montecucco F, Cea M, Cagnetta A, Damonte P, Nahimana A, Ballestrero A, Del Rio A, Bruzzone S, Nencioni A (2013) Nicotinamide phosphoribosyltransferase as a target in inflammation- related disorders. Curr Top Med Chem 13(23):2930–2938. https://doi.org/10.2174/15680266113136660208

    Article  CAS  PubMed  Google Scholar 

  21. Pylaeva E, Harati MD, Spyra I, Bordbari S, Strachan S, Thakur BK, Höing B, Franklin C, Skokowa J, Welte K, Schadendorf D, Bankfalvi A, Brandau S, Lang S, Jablonska J (2019) NAMPT signaling is critical for the proangiogenic activity of tumor-associated neutrophils. Int J Cancer 144(1):136–149. https://doi.org/10.1002/ijc.31808

    Article  CAS  PubMed  Google Scholar 

  22. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, Tilg H (2007) Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol 178(3):1748–1758. https://doi.org/10.4049/jimmunol.178.3.1748

    Article  CAS  PubMed  Google Scholar 

  23. Travelli C, Colombo G, Mola S, Genazzani AA, Porta C (2018) NAMPT: a pleiotropic modulator of monocytes and macrophages. Pharmacol Res 135:25–36. https://doi.org/10.1016/j.phrs.2018.06.022

    Article  CAS  PubMed  Google Scholar 

  24. Montecucco F, Bauer I, Braunersreuther V, Bruzzone S, Akhmedov A, Lüscher TF, Speer T, Poggi A, Mannino E, Pelli G, Galan K, Bertolotto M, Lenglet S, Garuti A, Montessuit C, Lerch R, Pellieux C, Vuilleumier N, Dallegri F, Mage J, Sebastian C, Mostoslavsky R, Gayet-Ageron A, Patrone F, Mach F, Nencioni A (2013) Inhibition of nicotinamide phosphoribosyltransferase reduces neutrophil-mediated injury in myocardial infarction. Antioxid Redox Signal 18(6):630–641. https://doi.org/10.1089/ars.2011.4487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang S, Ryu JH, Oh H, Jeon J, Kwak JS, Kim JH, Kim HA, Chun CH, Chun JS (2015) NAMPT (visfatin), a direct target of hypoxia-inducible factor-2α, is an essential catabolic regulator of osteoarthritis. Ann Rheum Dis 74(3):595–602. https://doi.org/10.1136/annrheumdis-2013-204355

    Article  CAS  PubMed  Google Scholar 

  26. Chen CX, Huang J, Tu GQ, Lu JT, Xie X, Zhao B, Wu M, Shi QJ, Fang SH, Wei EQ, Zhang WP, Lu YB (2017) NAMPT inhibitor protects ischemic neuronal injury in rat brain via anti-neuroinflammation. Neuroscience 356:193–206. https://doi.org/10.1016/j.neuroscience.2017.05.022

    Article  CAS  PubMed  Google Scholar 

  27. Zhang XQ, Lu JT, Jiang WX, Lu YB, Wu M, Wei EQ, Zhang WP, Tang C (2015) NAMPT inhibitor and metabolite protect mouse brain from cryoinjury through distinct mechanisms. Neuroscience 291:230–240. https://doi.org/10.1016/j.neuroscience.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  28. Tejero J, Hunt AP, Santolini J, Lehnert N, Stuehr DJ (2019) Mechanism and regulation of ferrous heme-nitric oxide (NO) oxidation in NO synthases. J Biol Chem 294(19):7904–7916. https://doi.org/10.1074/jbc.RA119.007810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park J, Ha SH, Abekura F, Lim H, Chang YC, Lee MJ, Lee M, Lee YC, Kim CH (2018) 4-O-carboxymethylascochlorin protected against microglial-mediated neurotoxicity in SH-SY5Y and BV2 cocultured cells from LPS-induced neuroinflammation and death by inhibiting MAPK, NF-κB, and Akt pathways. J Cell Biochem. https://doi.org/10.1002/jcb.27464

    Article  PubMed  PubMed Central  Google Scholar 

  30. Velagapudi R, Ajileye OO, Okorji U, Jain P, Aderogba MA, Olajide OA (2018) Agathisflavone isolated from Anacardium occidentale suppresses SIRT1-mediated neuroinflammation in BV2 microglia and neurotoxicity in APPSwe-transfected SH-SY5Y cells. Phytother Res 32(10):1957–1966. https://doi.org/10.1002/ptr.6122

    Article  CAS  PubMed  Google Scholar 

  31. Yshii LM, Denadai-Souza A, Vasconcelos AR, Avellar MC, Scavone C (2015) Suppression of MAPK attenuates neuronal cell death induced by activated glia-conditioned medium in alpha-synuclein overexpressing SH-SY5Y cells. J Neuroinflammation 12:193. https://doi.org/10.1186/s12974-015-0412-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiaoying L, Li T, Yu S, Jiusheng J, Jilin Z, Jiayi W, Dongxin L, Wengang F, Xinyue Z, Hao Y, Yuhua C, Deshu S (2019) Resistin-inhibited neural stem cell-derived astrocyte differentiation contributes to permeability destruction of the blood-brain barrier. Neurochem Res 44(4):905–916. https://doi.org/10.1007/s11064-019-02726-3

    Article  CAS  PubMed  Google Scholar 

  33. Subhramanyam CS, Wang C, Hu Q, Dheen ST (2019) Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 94:112–120. https://doi.org/10.1016/j.semcdb.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  34. Kirkley KS, Popichak KA, Afzali MF, Legare ME, Tjalkens RB (2017) Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflammation 14(1):99. https://doi.org/10.1186/s12974-017-0871-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang B, Liu J, Meng T, Li Y, He D, Ran X, Chen G, Guo W, Kan X, Fu S, Wang W, Liu D (2018) Polydatin prevents lipopolysaccharide (LPS)-induced Parkinson’s disease via regulation of the AKT/GSK3β-Nrf2/NF-κB signaling axis. Front Immunol 9:2527. https://doi.org/10.3389/fimmu.2018.02527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar A, Kalita J, Sinha RA, Singh GBA, Shukla M, Tiwari S, Dhole TN, Misra UK (2020) Impaired autophagy flux is associated with proinflammatory microglia activation following Japanese encephalitis virus infection. Neurochem Res. https://doi.org/10.1007/s11064-020-03080-5

    Article  PubMed  Google Scholar 

  37. Zhang K, Wang H, Xu M, Frank JA, Luo J (2018) Role of MCP-1 and CCR2 in ethanol-induced neuroinflammation and neurodegeneration in the developing brain. J Neuroinflammation 15(1):197. https://doi.org/10.1186/s12974-018-1241-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun Y, Ma J, Li D, Li P, Zhou X, Li Y, He Z, Qin L, Liang L, Luo X (2019) Interleukin-10 inhibits interleukin-1β production and inflammasome activation of microglia in epileptic seizures. J Neuroinflammation 16(1):66. https://doi.org/10.1186/s12974-019-1452-1

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qiu Z, Lu P, Wang K, Zhao X, Li Q, Wen J, Zhang H, Li R, Wei H, Lv Y, Zhang S, Zhang P (2020) Dexmedetomidine inhibits neuroinflammation by altering microglial M1/M2 polarization through MAPK/ERK pathway. Neurochem Res 45(2):345–353. https://doi.org/10.1007/s11064-019-02922-1

    Article  CAS  PubMed  Google Scholar 

  40. West PK, Viengkhou B, Campbell IL, Hofer MJ (2019) Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia 67(10):1821–1841. https://doi.org/10.1002/glia.23634

    Article  PubMed  Google Scholar 

  41. Prieto GA, Tong L, Smith ED, Cotman CW (2019) TNFα and IL-1β but not IL-18 suppresses hippocampal long-term potentiation directly at the synapse. Neurochem Res 44(1):49–60. https://doi.org/10.1007/s11064-018-2517-8

    Article  CAS  PubMed  Google Scholar 

  42. Klimova N, Fearnow A, Kristian T (2020) Role of NAD(+)-modulated mitochondrial free radical generation in mechanisms of acute brain injury. Brain Sci. https://doi.org/10.3390/brainsci10070449

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guzik TJ, Korbut R, Adamek-Guzik T (2003) Nitric oxide and superoxide in inflammation and immune regulation. J physiol Pharmacol 54(4):469–487

    CAS  PubMed  Google Scholar 

  44. Tse JKY (2017) Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders. ACS Chem Neurosci 8(7):1438–1447. https://doi.org/10.1021/acschemneuro.7b00176

    Article  CAS  PubMed  Google Scholar 

  45. Zhao Q, Ma YM, Jing L, Zheng TX, Jiang HF, Li PA, Zhang JZ (2019) Coenzyme Q10 protects astrocytes from ultraviolet b-induced damage through inhibition of ERK 1/2 pathway overexpression. Neurochem Res 44(7):1755–1763. https://doi.org/10.1007/s11064-019-02812-6

    Article  CAS  PubMed  Google Scholar 

  46. Pérez-Rodríguez R, Roncero C, Oliván AM, González MP, Oset-Gasque MJ (2009) Signaling mechanisms of interferon gamma induced apoptosis in chromaffin cells: involvement of nNOS, iNOS, and NFkappaB. J Neurochem 108(4):1083–1096. https://doi.org/10.1111/j.1471-4159.2008.05862.x

    Article  CAS  PubMed  Google Scholar 

  47. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8(10):766–775. https://doi.org/10.1038/nrn2214

    Article  CAS  PubMed  Google Scholar 

  48. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. https://doi.org/10.1038/nrn2038

    Article  CAS  PubMed  Google Scholar 

  49. Xu Y, Cui K, Li J, Tang X, Lin J, Lu X, Huang R, Yang B, Shi Y, Ye D, Huang J, Yu S, Liang X (2020) Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway. J Pineal Res. https://doi.org/10.1111/jpi.12660

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gerner RR, Klepsch V, Macheiner S, Arnhard K, Adolph TE, Grander C, Wieser V, Pfister A, Moser P, Hermann-Kleiter N, Baier G, Oberacher H, Tilg H, Moschen AR (2018) NAD metabolism fuels human and mouse intestinal inflammation. Gut 67(10):1813–1823. https://doi.org/10.1136/gutjnl-2017-314241

    Article  CAS  PubMed  Google Scholar 

  51. Zou X, Xie L, Wang W, Zhao G, Tian X, Chen M (2020) FK866 alleviates cerebral pyroptosis and inflammation mediated by Drp1 in a rat cardiopulmonary resuscitation model. Int Immunopharmacol 89(Pt A):107032. https://doi.org/10.1016/j.intimp.2020.107032

    Article  CAS  PubMed  Google Scholar 

  52. Li Y, Zhang Y, Dorweiler B, Cui D, Wang T, Woo CW, Brunkan CS, Wolberger C, Imai S, Tabas I (2008) Extracellular Nampt promotes macrophage survival via a nonenzymatic interleukin-6/STAT3 signaling mechanism. J Biol Chem 283(50):34833–34843. https://doi.org/10.1074/jbc.M805866200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu YB, Chen CX, Huang J, Tian YX, Xie X, Yang P, Wu M, Tang C, Zhang WP (2019) Nicotinamide phosphoribosyltransferase secreted from microglia via exosome during ischemic injury. J Neurochem 150(6):723–737. https://doi.org/10.1111/jnc.14811

    Article  CAS  PubMed  Google Scholar 

  54. Tan Z, Chen L, Ren Y, Jiang X, Gao W (2020) Neuroprotective effects of FK866 against traumatic brain injury: Involvement of p38/ERK pathway. Ann Clin Transl Neurol 7(5):742–756. https://doi.org/10.1002/acn3.51044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu LY, Wang F, Zhang XY, Huang P, Lu YB, Wei EQ, Zhang WP (2012) Nicotinamide phosphoribosyltransferase may be involved in age-related brain diseases. PLoS ONE 7(10):e44933. https://doi.org/10.1371/journal.pone.0044933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Esposito E, Impellizzeri D, Mazzon E, Fakhfouri G, Rahimian R, Travelli C, Tron GC, Genazzani AA, Cuzzocrea S (2012) The NAMPT inhibitor FK866 reverts the damage in spinal cord injury. J Neuroinflammation 9:66. https://doi.org/10.1186/1742-2094-9-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xie W, Zhu T, Zhou P, Xu H, Meng X, Ding T, Nan F, Sun G, Sun X (2020) Notoginseng leaf triterpenes ameliorates OGD/R-induced neuronal injury via SIRT1/2/3-Foxo3a-MnSOD/PGC-1α signaling pathways mediated by the NAMPT-NAD pathway. Oxid Med Cell Longev 2020:7308386. https://doi.org/10.1155/2020/7308386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bi J, Li H, Ye SQ, Ding S (2012) Pre-B-cell colony-enhancing factor exerts a neuronal protection through its enzymatic activity and the reduction of mitochondrial dysfunction in in vitro ischemic models. J Neurochem 120(2):334–346. https://doi.org/10.1111/j.1471-4159.2011.07566.x

    Article  CAS  PubMed  Google Scholar 

  59. Song SY, Jung EC, Bae CH, Choi YS, Kim YD (2014) Visfatin induces MUC8 and MUC5B expression via p38 MAPK/ROS/NF-κB in human airway epithelial cells. J Biomed Sci 21(1):49. https://doi.org/10.1186/1423-0127-21-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Audrito V, Serra S, Brusa D, Mazzola F, Arruga F, Vaisitti T, Coscia M, Maffei R, Rossi D, Wang T, Inghirami G, Rizzi M, Gaidano G, Garcia JG, Wolberger C, Raffaelli N, Deaglio S (2015) Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia. Blood 125(1):111–123. https://doi.org/10.1182/blood-2014-07-589069

    Article  CAS  PubMed  Google Scholar 

  61. Andreakos E, Sacre SM, Smith C, Lundberg A, Kiriakidis S, Stonehouse T, Monaco C, Feldmann M, Foxwell BM (2004) Distinct pathways of LPS-induced NF-kappa B activation and cytokine production in human myeloid and nonmyeloid cells defined by selective utilization of MyD88 and Mal/TIRAP. Blood 103(6):2229–2237. https://doi.org/10.1182/blood-2003-04-1356

    Article  CAS  PubMed  Google Scholar 

  62. Gao HM, Zhou H, Zhang F, Wilson BC, Kam W, Hong JS (2011) HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci 31(3):1081–1092. https://doi.org/10.1523/jneurosci.3732-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xicoy H, Wieringa B, Martens GJ (2017) The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegeneration 12(1):10. https://doi.org/10.1186/s13024-017-0149-0

    Article  CAS  Google Scholar 

  64. Xu Y, Tang D, Wang J, Wei H, Gao J (2019) Neuroprotection of andrographolide against microglia-mediated inflammatory injury and oxidative damage in PC12 neurons. Neurochem Res 44(11):2619–2630. https://doi.org/10.1007/s11064-019-02883-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Projects of the National Natural Science Foundation of China [Grant Number 81671273], [Grant Number 81171204], [Grant Number 30772280], [Grant Number 81400925], [Grant Number 81471148], [Grant Number 81771211], [Grant Number 81703852]; the Project of Shanghai Municipal Education Commission of China [Grant Number 14YZ046]; the Project of Shanghai Municipal Health and Family Planning Commission of China [Grant Number 20134049], the Project of Shanghai Jiao Tong University of China [Grant Number YG2013MS22]; the Project of National Eastern Tech-transfer Center [Grant Number 201713972877]; the Projects of Shanghai Committee of Science and Technology [Grant Number 17401901000]; National Key R and D Program of China [Grant Number 2017YFC1310300]; SHSMU-ION Research Center for Brain Disorders [Grant Number 2015NKX007].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijin Wang.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Yu, L., Liu, Y. et al. Lipopolysaccharide-Induced Microglial Neuroinflammation: Attenuation by FK866. Neurochem Res 46, 1291–1304 (2021). https://doi.org/10.1007/s11064-021-03267-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03267-4

Keywords

Navigation