Skip to main content
Log in

Ex Vivo Investigation of Bexarotene and Nicotinamide Function as a Protectıve Agent on Rat Synaptosomes Treated with Aβ(1-42)

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In this study, we were aimed to investigate the neuroprotective effects of bexarotene and nicotinamide in synaptosomes incubated with amyloid-beta (Aβ). Our study consists of 2 parts, in vivo and in vitro. In the in vivo section, twenty-four Wistar albino male rats were divided into 4 groups (control, dimethyl sulfoxide (DMSO), nicotinamide and bexarotene) with six animals in each group. DMSO(1%), nicotinamide(100 mg/kg) and bexarotene(0.1 mg/kg) were administered intraperitoneally to animals in the experimental groups for seven days. In the in vitro part of our study, three different isolation methods were used to obtain the synaptosomes from the brain tissue. Total antioxidant capacity(TAS), total oxidant capacity(TOS), cleaved caspase 3(CASP3), cytochrome c(Cyt c), sirtuin 1(SIRT1), peroxisome proliferator-activated receptor gamma(PPARγ) and poly(ADP-ribose) polymerase-1(PARP-1) levels in the synaptosomes incubated with a concentration of 10 µM Aβ(1-42) were measured by enzyme-linked immunosorbent assay method. Biochemical analysis and histopathological examinations in serum and brain samples showed that DMSO, nicotinamide and bexarotene treatments did not cause any damage to the rat brain tissue. We found that in vitro Aβ(1-42) administration decreased TAS, SIRT1 and PPARγ levels in synaptosomes while increasing TOS, CASP3, Cyt c, and PARP1 levels. Nicotinamide treatment suppressed oxidative stress and apoptosis by supporting antioxidant capacity and increased PPARγ through SIRT1 activation, causing PARP1 to decrease. On the other hand, bexarotene caused a moderate increase in SIRT1 levels with PPARγ activation. Consequently, we found that nicotinamide can be more effective than bexarotene in AD pathogenesis by regulating mitochondrial functions in synaptosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis 1:15056. https://doi.org/10.1038/nrdp.2015.56

    Article  Google Scholar 

  2. Tai HC, Wang BY, Serrano-Pozo A, Frosch MP, Spires-Jones TL, Hyman BT (2014) Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in Alzheimer’s disease. Acta Neuropathol Commun 2(1):146. https://doi.org/10.1186/s40478-014-0146-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Whittaker VP (1993) Thirty years of synaptosome research. J Neurocytol 22(9):735–742. https://doi.org/10.1007/BF01181319

    Article  CAS  PubMed  Google Scholar 

  4. Su B, Wang X, Nunomura A, Moreira PI, Lee HG, Perry G, Smith MA, Zhu X (2008) Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res 5(6):525–532. https://doi.org/10.2174/156720508786898451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Butterfield DA, Swomley AM, Sultana R (2013) Amyloid β-peptide (1–42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal 19(8):823–835. https://doi.org/10.1089/ars.2012.5027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Z, Sheng M (2012) Caspases in synaptic plasticity. Mol Brain 5(1):15. https://doi.org/10.1186/1756-6606-5-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Albani D, Polito L, Forloni G (2010) Sirtuins as novel targets for Alzheimer’s disease and other neurodegenerative disorders: experimental and genetic evidence. J Alzheimers Dis 19(1):11–26. https://doi.org/10.3233/JAD-2010-1215

    Article  CAS  PubMed  Google Scholar 

  8. Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24. https://doi.org/10.1016/j.molcel.2010.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aredia F, Scovassi AI (2014) Poly (ADP-ribose): a signaling molecule in different paradigms of cell death. Biochem Pharmacol 92(1):157–163. https://doi.org/10.1016/j.bcp.2014.06.021

    Article  CAS  PubMed  Google Scholar 

  10. Yonutas HM, Sullivan PG (2013) Targeting PPAR isoforms following CNS injury. Curr Drug Targets 14(7):733–742. https://doi.org/10.2174/1389450111314070003

    Article  CAS  PubMed  Google Scholar 

  11. Masciopinto F, Di Pietro N, Corona C, Bomba M, Pipino C, Curcio M, Di Castelnuovo A, Ciavardelli D, Silvestri E, Canzoniero LM, Sekler I, Pandolfi A, Sensi SL (2012) Effects of long-term treatment with pioglitazone on cognition and glucose metabolism of PS1-KI, 3xTg-AD, and wild-type mice. Cell Death Dis 3(12):e448. https://doi.org/10.1038/cddis.2012.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gniadecki R, Assaf C, Bagot M, Dummer R, Duvic M, Knobler R, Ranki A, Schwandt P, Whittaker S (2007) The optimal use of bexarotene in cutaneous T-cell lymphoma. Br J Dermatol 157(3):433–440. https://doi.org/10.1111/j.1365-2133.2007.07975.x

    Article  CAS  PubMed  Google Scholar 

  13. Cramer PE, Cirrito JR, Wesson DW, Lee CD, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ, Brunden KR, Wilson DA, Landreth GE (2012) ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Sci 335(6075):1503–1506. https://doi.org/10.1126/science

    Article  CAS  Google Scholar 

  14. Tai LM, Koster KP, Luo J, Lee SH, Wang YT, Collins NC, Ben Aissa M, Thatcher GR, LaDu MJ (2014) Amyloid-β pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. Journal of Biological Chem 289(44):30538–30555. https://doi.org/10.1074/jbc.M114.600833

    Article  CAS  Google Scholar 

  15. Huy PDQ, Thai NQ, Bednarikova Z, Phuc LH, Linh HQ, Gazova Z, Li MS (2017) Bexarotene does not clear amyloid beta plaques but delays fibril growth: Molecular mechanisms. ACS chemical neuroscience 8(9):1960–1969. https://doi.org/10.1021/acschemneuro.7b00107

    Article  CAS  PubMed  Google Scholar 

  16. Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32(1):12–19. https://doi.org/10.1016/j.tibs.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  17. Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, LaFerla FM (2008) Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 28(45):11500–11510. https://doi.org/10.1523/JNEUROSCI.3203-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bayrakdar ET, Armagan G, Uyanikgil Y, Kanit L, Koylu E, Yalcin A (2014) Ex vivo protective effects of nicotinamide and 3-aminobenzamide on rat synaptosomes treated with Aβ (1–42). Cell Biochem Funct 32(7):557–564. https://doi.org/10.1002/cbf.3049

    Article  CAS  PubMed  Google Scholar 

  19. Tunctan B, Kucukkavruk SP, Temiz-Resitoglu M, Guden DS, Sari AN, Sahan-Firat S (2018) Bexarotene, a selective RXRα agonist, reverses hypotension associated with inflammation and tissue injury in a rat model of septic shock. Inflammation 41(1):337–355. https://doi.org/10.1007/s10753-017-0691-5

    Article  CAS  PubMed  Google Scholar 

  20. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38(1):24–26. https://doi.org/10.1038/ng1718

    Article  CAS  PubMed  Google Scholar 

  21. Whittaker VP, Michaelson I, Kirkland RJA (1964) The separation of synaptic vesicles from nerve-ending particles (synaptosomes’). Biochem J 90(2):293. https://doi.org/10.1042/bj0900293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein Measurement with the Folin-Phenol Reagent. J Biol Chem 193(1):265–375

    Article  CAS  Google Scholar 

  23. Tenreiro P, Rebelo S, Martins F, Santos M, Coelho ED, Almeida M, Matos AAD, e Silva ODC (2017) Comparison of simple sucrose and percoll based methodologies for synaptosome enrichment. Anal Biochem 517:1–8. https://doi.org/10.1016/j.ab.2016.10.015

    Article  CAS  PubMed  Google Scholar 

  24. Sokolow S, Henkins KM, Williams IA, Vinters HV, Schmid I, Cole GM, Gylys KH (2012) Isolation of synaptic terminals from Alzheimer’s disease cortex. Cytometry Part A 81(3):248–254. https://doi.org/10.1002/cyto.a.22009

    Article  CAS  Google Scholar 

  25. Dunkley PR, Jarvie PE, Robinson PJ (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3(11):1718. https://doi.org/10.1038/nprot.2008.171

    Article  CAS  PubMed  Google Scholar 

  26. Dodd PR, Hardy JA, Oakley AE, Edwardson JA, Perry EK, Delaunoy JP (1981) A rapid method for preparing synaptosomes: comparison, with alternative procedures. Brain Res 226(1–2):107–118. https://doi.org/10.1016/0006-8993(81)91086-6

    Article  CAS  PubMed  Google Scholar 

  27. Sherman AD (1989) Isolation of metabolically distinct synaptosomes on Percoll gradients. Neurochem Res 14(1):97–101. https://doi.org/10.1007/bf00969765

    Article  CAS  PubMed  Google Scholar 

  28. Bai F, Witzmann FA (2007) Synaptosome proteomics. Subcell Biochem 3:77–98. https://doi.org/10.1007/978-1-4020-5943-8_6

    Article  Google Scholar 

  29. Mattson MP, Liu D (2002) Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Med 2(2):215–231. https://doi.org/10.1385/NMM:2:2:215

    Article  CAS  PubMed  Google Scholar 

  30. Pocernich CB (1822) Butterfield DA (2012) Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta 5:625–630. https://doi.org/10.1016/j.bbadis.2011.10.003

    Article  CAS  Google Scholar 

  31. Pratico D (2008) Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Neurosci 29(12):609–615. https://doi.org/10.1016/j.tips.2008.09.001

    Article  CAS  Google Scholar 

  32. Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP, Szeto HH, Park B, Reddy PH (2010) Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 20(2):609–631. https://doi.org/10.3233/JAD-2010-100564

    Article  CAS  Google Scholar 

  33. Hroudova J, Singh N, Fisar Z (2014) Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. Biomed Res Int 2014:175062. https://doi.org/10.1155/2014/175062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Louneva N, Cohen JW, Han LY, Talbot K, Wilson RS, Bennett DA, Trojanowski JQ, Arnold SE (2008) Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease. Am J Pathol 173(5):1488–1495. https://doi.org/10.2353/ajpath.2008.080434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ng F, Wijaya L, Tang BL (2015) SIRT1 in the brain—connections with aging-associated disorders and lifespan. Front Cell Neurosci 9:64. https://doi.org/10.3389/fncel.2015.00064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282(9):6823–6832. https://doi.org/10.1074/jbc.M609554200

    Article  CAS  PubMed  Google Scholar 

  37. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve AA, Pasinetti GM (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281(31):21745–21754. https://doi.org/10.1074/jbc.M602909200

    Article  CAS  PubMed  Google Scholar 

  38. Julien C, Tremblay C, Emond V, Lebbadi M, JrN S, Bennett DA, Calon F (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp 68(1):48–58. https://doi.org/10.1097/NEN.0b013e3181922348

    Article  CAS  Google Scholar 

  39. Schmitt K, Grimm A, Kazmierczak A, Strosznajder JB, Götz J, Eckert A (2012) Insights into mitochondrial dysfunction: aging, amyloid-β, and tau–a deleterious trio. Antioxid Redox Signal 16(12):1456–1466. https://doi.org/10.1089/ars.2011.4400

    Article  CAS  PubMed  Google Scholar 

  40. Strosznajder JB, Czapski GA, Adamczyk A, Strosznajder RP (2012) Poly (ADP-ribose) polymerase-1 in amyloid beta toxicity and Alzheimer’s disease. Mol Neurobiol 46(1):78–84. https://doi.org/10.1007/s12035-012-8258-9

    Article  CAS  PubMed  Google Scholar 

  41. de la Monte SM, Wands JR (2006) Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J Alzheimer’s Dis 9(2):167–181. https://doi.org/10.3233/jad-2006-9209

    Article  Google Scholar 

  42. Moosecker S, Gomes PA, Dioli C, Yu S, Sotiropoulos I, Almeida OF (2019) Activated PPARγ abrogates misprocessing of amyloid precursor protein, Tau missorting and synaptotoxicity. Front Cell Neurosci 13:239. https://doi.org/10.3389/fncel.2019.00239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Inestrosa NC, Godoy JA, Quintanilla RA, Koenig CS, Bronfman M (2005) Peroxisome proliferator-activated receptor γ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling. Exp Cell Res 304(1):91–104. https://doi.org/10.1016/j.yexcr.2004.09.032

    Article  CAS  PubMed  Google Scholar 

  44. Bieganowski P, Brenner C (2004) Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell 117(4):495–502. https://doi.org/10.1016/s0092-8674(04)00416-7

    Article  CAS  PubMed  Google Scholar 

  45. Demarin V, Podobnik SS, Storga-Tomic D, Kay G (2004) Treatment of Alzheimer’s disease with stabilized oral nicotinamide adenine dinucleotide: a randomized, double-blind study. Drugs Exp Clin Res 30(1):27–33

    CAS  PubMed  Google Scholar 

  46. Liu D, Gharavi R, Pitta M, Gleichmann M, Mattson MP (2009) Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromol Med 11(1):28–42. https://doi.org/10.1007/s12017-009-8058-1

    Article  CAS  Google Scholar 

  47. Li X, Zhang S, Blander G, Jeanette GT, Krieger M, Guarente L (2007) SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 28(1):91–106. https://doi.org/10.1016/j.molcel.2007.07.032

    Article  CAS  PubMed  Google Scholar 

  48. Martire S, Fuso A, Rotili D, Tempera I, Giordano C, De Zottis I, Muzi A, Vernole P, Graziani G, Lococo E, Faraldi M, Maras B, Scarpa S, Mosca L, d’Erme M (2013) PARP-1 modulates amyloid beta peptide-induced neuronal damage. PLoS ONE. https://doi.org/10.1371/journal.pone.0072169

    Article  PubMed  PubMed Central  Google Scholar 

  49. Smith BC, Hallows WC, Denu JM (2009) A continuous microplate assay for sirtuins and nicotinamide-producing enzymes. Anal Biochem 394(1):101–109. https://doi.org/10.1016/j.ab.2009.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bai P, Canto C, Oudart H, Brunyanszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper RH, Schoonjans K, Schreiber V, Sauve AA, Menissier-de Murcia J, Auwerx J (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13(4):461–468. https://doi.org/10.1016/j.cmet.2011.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuntz M, Candela P, Saint-Pol J, Lamartiniere Y, Boucau MC, Sevin E, Fenart L, Gosselet F (2015) Bexarotene promotes cholesterol efflux and restricts apical-to-basolateral transport of amyloid-β peptides in an in vitro model of the human blood-brain barrier. J Alzheimer’s Dis 48(3):849–862. https://doi.org/10.3233/JAD-150469

    Article  CAS  Google Scholar 

  52. Sastre M, Dewachter I, Rossner S, Bogdanovic N, Rosen E, Borghgraef P, Evert BO, Dumitrescu-Ozimek L, Thal DR, Landreth G, Walter J, Klockgether T, van Leuven F, Heneka MT (2006) Nonsteroidal anti-inflammatory drugs repress β-secretase gene promoter activity by the activation of PPARγ. Proc Natl Acad Sci USA 103(2):443–448. https://doi.org/10.1073/pnas.0503839103

    Article  CAS  PubMed  Google Scholar 

  53. Ghosal K, Haag M, Verghese PB, West T, Veenstra T, Braunstein JB, Bateman RJ, Holtzman DM, Landreth GE (2016) A randomized controlled study to evaluate the effect of bexarotene on amyloid-β and apolipoprotein E metabolism in healthy subjects. Alzheimers Dement (NY) 2(2):110–120. https://doi.org/10.1016/j.trci.2016.06.001

    Article  Google Scholar 

  54. Hwang ES, Song SB (2020) Possible adverse effects of high-dose nicotinamide: mechanisms and safety assessment. Biomolecules 10(5):687. https://doi.org/10.3390/biom10050687

    Article  CAS  PubMed Central  Google Scholar 

  55. Duvic M, Hymes K, Heald P, Breneman D, Martin AG, Myskowski P, Crowley C, Yocum RC, Bexarotene Worldwide Study Group (2001) Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol 19(9):2456–71. https://doi.org/10.1200/JCO.2001.19.9.2456

    Article  CAS  PubMed  Google Scholar 

  56. Cramer PE, Cirrito JR, Wesson DW, Lee CD, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ, Brunden KR, Wilson DA, Landreth GE (2012) ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335(6075):1503–1506. https://doi.org/10.1126/science

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Han L, Zhou R, Niu J, McNutt MA, Wang P, Tong T (2010) SIRT1 is regulated by a PPARγ–SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res 38(21):7458–7471. https://doi.org/10.1093/nar/gkq609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Eskişehir Osmangazi University Scientific Research Commission with grant number 201811D21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceyhan Hacioglu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacioglu, C., Kar, F. & Kanbak, G. Ex Vivo Investigation of Bexarotene and Nicotinamide Function as a Protectıve Agent on Rat Synaptosomes Treated with Aβ(1-42). Neurochem Res 46, 804–818 (2021). https://doi.org/10.1007/s11064-020-03216-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03216-7

Keywords

Navigation