Skip to main content
Log in

Protective Effects of 28-O-Caffeoyl Betulin (B-CA) on the Cerebral Cortex of Ischemic Rats Revealed by a NMR-Based Metabolomics Analysis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

A Correction to this article was published on 16 January 2021

This article has been updated

Abstract

28-O-caffeoyl betulin (B-CA) has been demonstrated to reduce the cerebral infarct volume caused by transient middle cerebral artery occlusion (MCAO) injury. B-CA is a novel derivative of naturally occurring caffeoyl triterpene with little information associated with its pharmacological target(s). To date no data is available regarding the effect of B-CA on brain metabolism. In the present study, a 1H-NMR-based metabolomics approach was applied to investigate the therapeutic effects of B-CA on brain metabolism following MCAO in rats. Global metabolic profiles of the cortex in acute period (9 h after focal ischemia onset) after MCAO were compared between the groups (sham; MCAO + vehicle; MCAO + B-CA). MCAO induced several changes in the ipsilateral cortex of ischemic rats, which consequently led to the neuronal damage featured with the downregulation of NAA, including energy metabolism dysfunctions, oxidative stress, and neurotransmitter metabolism. Treatment with B-CA showed statistically significant rescue effects on the ischemic cortex of MCAO rats. Specifically, treatment with B-CA ameliorated the energy metabolism dysfunctions (back-regulating the levels of succinate, lactate, BCAAs, and carnitine), oxidative stress (upregulating the level of glutathione), and neurotransmitter metabolism disturbances (back-regulating the levels of γ-aminobutyric acid and acetylcholine) associated with the progression of ischemic stroke. With the administration of B-CA, the levels of three phospholipid related metabolites (O-phosphocholine, O-phosphoethanolamine, sn-glycero-3-phosphocholine) and NAA improved significantly. Overall, our findings suggest that treatment with B-CA may provide neuroprotection by augmenting the metabolic changes observed in the cortex following MCAO in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67(2):181–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jung JY, Lee HS, Kang DG, Kim NS, Cha MH, Bang OS, Ryu do H, Hwang GS (2011) 1H-NMR-based metabolomics study of cerebral infarction. Stroke 42(5):1282–8

    Article  CAS  PubMed  Google Scholar 

  3. Aarts MM, Tymianski M (2004) Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr Mol Med 4(2):137–147

    Article  CAS  PubMed  Google Scholar 

  4. Kleinig TJ, Vink R (2009) Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol 22(3):294–301

    Article  PubMed  Google Scholar 

  5. Nicholson JK, Lindon JC, Holmes E (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189

    Article  CAS  PubMed  Google Scholar 

  6. Sinclair AJ, Viant MR, Ball AK, Burdon MA, Walker EA, Stewart PM, Rauz S, Young SP (2010) NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases–a diagnostic tool? NMR Biomed 23(2):123–132

    CAS  PubMed  Google Scholar 

  7. Gupta S, Sharma U, Jagannathan NR, Gupta YK (2020) (1) H NMR metabolomic profiling elucidated attenuation of neurometabolic alterations by lercanidipine in MCAo model in rats. J Pharm Pharmacol 72(6):816–825

    Article  CAS  PubMed  Google Scholar 

  8. Bylesjo M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemometr 20(8–10):341–351

    Article  CAS  Google Scholar 

  9. Wang Y, Wang YG, Ma TF, Li M, Gu SL (2014) Dynamic metabolites profile of cerebral ischemia/reperfusion revealed by (1)H NMR-based metabolomics contributes to potential biomarkers. Int J Clin Exp Pathol 7(7):4067–4075

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang M, Wang S, Hao F, Li Y, Tang H, Shi X (2012) NMR analysis of the rat neurochemical changes induced by middle cerebral artery occlusion. Talanta 88:136–144

    Article  CAS  PubMed  Google Scholar 

  11. Guan Q, Liang S, Wang Z, Yang Y, Wang S (2014) (1)H NMR-based metabonomic analysis of the effect of optimized rhubarb aglycone on the plasma and urine metabolic fingerprints of focal cerebral ischemia-reperfusion rats. J Ethnopharmacol 154(1):65–75

    Article  CAS  PubMed  Google Scholar 

  12. Haberg A, Qu H, Saether O, Unsgard G, Haraldseth O, Sonnewald U (2001) Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: the role of astrocytes in neuronal survival. J Cereb Blood Flow Metab 21(12):1451–1463

    Article  CAS  PubMed  Google Scholar 

  13. Haberg A, Qu H, Sonnewald U (2006) Glutamate and GABA metabolism in transient and permanent middle cerebral artery occlusion in rat: importance of astrocytes for neuronal survival. Neurochem Int 48(6–7):531–540

    Article  CAS  PubMed  Google Scholar 

  14. Haberg A, Qu H, Hjelstuen MH, Sonnewald U (2007) Effect of the pyrrolopyrimidine lipid peroxidation inhibitor U-101033E on neuronal and astrocytic metabolism and infarct volume in rats with transient middle cerebral artery occlusion. Neurochem Int 50(7–8):932–940

    Article  CAS  PubMed  Google Scholar 

  15. Ruan Z, Wang HM, Huang XT, Fu Y, Wu J, Ye CY, Li JL, Wu L, Gong Q, Zhao WM, Zhang HY (2015) A novel caffeoyl triterpene attenuates cerebral ischemic injury with potent anti-inflammatory and hypothermic effects. J Neurochem 133(1):93–103

    Article  CAS  PubMed  Google Scholar 

  16. Xing WQ, Fu Y, Shi ZX, Lu D, Zhang HY, Hu YH (2013) Discovery of novel 2,6-disubstituted pyridazinone derivatives as acetylcholinesterase inhibitors. Eur J Med Chem 63:95–103

    Article  CAS  PubMed  Google Scholar 

  17. Zhang T, Wang W, Huang J, Liu X, Zhang H, Zhang N (2016) Metabolomic investigation of regional brain tissue dysfunctions induced by global cerebral ischemia. BMC Neurosci 17(1):25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Liu X, Zhu W, Guan S, Feng R, Zhang H, Liu Q, Sun P, Lin D, Zhang N, Shen J (2013) Metabolomic analysis of anti-hypoxia and anti-anxiety effects of Fu Fang Jin Jing oral liquid. PLoS ONE 8(10):e78281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma H, Liu X, Wu Y, Zhang N (2015) The intervention effects of acupuncture on fatigue induced by exhaustive physical exercises: a metabolomics investigation. Evid Based Complement Alternat Med 2015:508302

    PubMed  PubMed Central  Google Scholar 

  20. Huang XP, Ding H, Wang B, Qiu YY, Tang YH, Zeng R, Deng CQ (2015) Effects of the main active components combinations of Astragalus and Panax notoginseng on energy metabolism in brain tissues after cerebral ischemia-reperfusion in mice. Pharmacogn Mag 11(44):732–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo L, Kang JZ, He Q, Qi Y, Chen XY, Wang SM, Liang SW (2019) A NMR-based metabonomics approach to determine protective effect of a combination of multiple components derived from Naodesheng on ischemic stroke rats. Molecules 24(9):1831

    Article  CAS  PubMed Central  Google Scholar 

  22. Su L, Zhao HX, Zhang XH, Lou ZY, Dong X (2016) UHPLC-Q-TOF-MS based serum metabonomics revealed the metabolic perturbations of ischemic stroke and the protective effect of RKIP in rat models. Mol Biosyst 12(6):1831–1841

    Article  CAS  PubMed  Google Scholar 

  23. Mulder S, Hammarstedt A, Nagaraj SB, Nair V, Ju W, Hedberg J, Greasley PJ, Eriksson JW, Oscarsson J, Heerspink HJL (2020) A metabolomics-based molecular pathway analysis of how the sodium-glucose co-transporter-2 inhibitor dapagliflozin may slow kidney function decline in patients with diabetes. Diabetes Obes Metab 22(7):1157–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Costa CG, Dorland L, Holwerda U, de Almeida IT, Poll-The BT, Jakobs C, Duran M (1998) Simultaneous analysis of plasma free fatty acids and their 3-hydroxy analogs in fatty acid beta-oxidation disorders. Clin Chem 44(3):463–471

    Article  CAS  PubMed  Google Scholar 

  25. Li P, Stetler RA, Leak RK, Shi Y, Li Y, Yu W, Bennett MVL, Chen J (2018) Oxidative stress and DNA damage after cerebral ischemia: potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology 134(Pt B):208–217

    Article  CAS  PubMed  Google Scholar 

  26. Chauhan A, Sharma U, Reeta KH, Jagannathan NR, Mehra RD, Gupta YK (2012) Neuroimaging, biochemical and cellular evidence of protection by mycophenolate mofetil on middle cerebral artery occlusion induced injury in rats. Eur J Pharmacol 684(1–3):71–78

    Article  CAS  PubMed  Google Scholar 

  27. Heales SJ, Davies SE, Bates TE, Clark JB (1995) Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem Res 20(1):31–38

    Article  CAS  PubMed  Google Scholar 

  28. Chen HJ, Shen YC, Lin CY, Tsai KC, Lu CK, Shen CC, Lin YL (2012) Metabolomics study of Buyang Huanwu Tang Decoction in ischemic stroke mice by 1H NMR. Metabolomics 8:974–84

    Article  CAS  Google Scholar 

  29. Stummer W, Betz AL, Shakui P, Keep RF (1995) Blood–brain barrier taurine transport during osmotic stress and in focal cerebral ischemia. J Cereb Blood Flow Metab 15(5):852–859

    Article  CAS  PubMed  Google Scholar 

  30. Sun M, Zhao YM, Gu Y, Xu C (2012) Therapeutic window of taurine against experimental stroke in rats. Transl Res 160(3):223–229

    Article  CAS  PubMed  Google Scholar 

  31. Mahalakshmi K, Pushpakiran G, Anuradha CV (2003) Taurine prevents acrylonitrile-induced oxidative stress in rat brain. Pol J Pharmacol 55(6):1037–1043

    CAS  PubMed  Google Scholar 

  32. Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42(6):2223–2232

    Article  CAS  PubMed  Google Scholar 

  33. Wang PR, Wang JS, Yang MH, Kong LY (2014) Neuroprotective effects of Huang-Lian-Jie-Du-Decoction on ischemic stroke rats revealed by (1)H NMR metabolomics approach. J Pharm Biomed Anal 88:106–116

    Article  CAS  PubMed  Google Scholar 

  34. Erecinska M, Nelson D, Daikhin Y, Yudkoff M (1996) Regulation of GABA level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium, and ketone bodies. J Neurochem 67(6):2325–2334

    Article  CAS  PubMed  Google Scholar 

  35. Demougeot C, Marie C, Giroud M, Beley A (2004) N-acetylaspartate: a literature review of animal research on brain ischaemia. J Neurochem 90(4):776–783

    Article  CAS  PubMed  Google Scholar 

  36. Cvoro V, Wardlaw JM, Marshall I, Armitage PA, Rivers CS, Bastin ME, Carpenter TK, Wartolowska K, Farrall AJ, Dennis MS (2009) Associations between diffusion and perfusion parameters, N-acetyl aspartate, and lactate in acute ischemic stroke. Stroke 40(3):767–772

    Article  CAS  PubMed  Google Scholar 

  37. Badini I, Beani L, Bianchi C, Marzola G, Siniscalchi A (1997) Post-ischemic recovery of acetylcholine release in vitro: influence of different excitatory amino acid receptor subtype antagonists. Neurochem Int 31(6):817–824

    Article  CAS  PubMed  Google Scholar 

  38. Ishimaru H, Takahashi A, Ikarashi Y, Maruyama Y (1997) Effects of MK-801 and pentobarbital on cholinergic terminal damage and delayed neuronal death in the ischemic gerbil hippocampus. Brain Res Bull 43(1):81–85

    Article  CAS  PubMed  Google Scholar 

  39. Iwasaki K, Kitamura Y, Ohgami Y, Mishima K, Fujiwara M (1996) The disruption of spatial cognition and changes in brain amino acid, monoamine and acetylcholine in rats with transient cerebral ischemia. Brain Res 709(2):163–172

    Article  CAS  PubMed  Google Scholar 

  40. Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76(1):116–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. NeuroReport 7(8):1397–1400

    Article  CAS  PubMed  Google Scholar 

  42. Munoz Maniega S, Cvoro V, Chappell FM, Armitage PA, Marshall I, Bastin ME, Wardlaw JM (2008) Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging study. Neurology 71(24):1993–1999

    Article  CAS  PubMed  Google Scholar 

  43. Lim KO, Spielman DM (1997) Estimating NAA in cortical gray matter with applications for measuring changes due to aging. Magn Reson Med 37(3):372–377

    Article  CAS  PubMed  Google Scholar 

  44. Strahl T, Thorner J (2007) Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1771(3):353–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The NMR data was recorded in the Institutional Technological Service Center of Shanghai Institute of Materia Medica, Chinese Academy of Sciences. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21877119, 81872859, 21778061), and the National Science & Technology Major Project “Key New Drug Creation and Manufacturing Program” of China (Grant Nos. 2018ZX09711002, 2018ZX09711002-002-014).

Author information

Authors and Affiliations

Authors

Contributions

H-yZ, N-xZ and W-mZ designed the study. XL, RZ, H-yZ and N-xZ wrote the manuscript. XL, RZ, X-cS, H-xF, LW, WW, H-mW, H-yM, R-jZ performed the experiments.

Corresponding authors

Correspondence to Wei-min Zhao, Hai-yan Zhang or Nai-xia Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to update in Fig. 3.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Ruan, Z., Shao, Xc. et al. Protective Effects of 28-O-Caffeoyl Betulin (B-CA) on the Cerebral Cortex of Ischemic Rats Revealed by a NMR-Based Metabolomics Analysis. Neurochem Res 46, 686–698 (2021). https://doi.org/10.1007/s11064-020-03202-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03202-z

Keywords

Navigation