Skip to main content

Advertisement

Log in

Characterization of Glycosaminoglycan Disaccharide Composition in Astrocyte Primary Cultures and the Cortex of Neonatal Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes are major producers of the extracellular matrix (ECM), which is involved in the plasticity of the developing brain. In utero alcohol exposure alters neuronal plasticity. Glycosaminoglycans (GAGs) are a family of polysaccharides present in the extracellular space; chondroitin sulfate (CS)- and heparan sulfate (HS)-GAGs are covalently bound to core proteins to form proteoglycans (PGs). Hyaluronic acid (HA)-GAGs are not bound to core proteins. In this study we investigated the contribution of astrocytes to CS-, HS-, and HA-GAG production by comparing the makeup of these GAGs in cortical astrocyte cultures and the neonatal rat cortex. We also explored alterations induced by ethanol in GAG and core protein levels in astrocytes. Finally, we investigated the relative expression in astrocytes of CS-PGs of the lectican family of proteins, major components of the brain ECM, in vivo using translating ribosome affinity purification (TRAP) (in Aldh1l1-EGFP-Rpl10a mice. Cortical astrocytes produce low levels of HA and show low expression of genes involved in HA biosynthesis compared to the whole developing cortex. Astrocytes have high levels of chondroitin-0-sulfate (C0S)-GAGs (possibly because of a higher sulfatase enzyme expression) and HS-GAGs. Ethanol upregulates C4S-GAGs as well as brain-specific lecticans neurocan and brevican, which are highly enriched in astrocytes of the developing cortex in vivo. These results begin to elucidate the role of astrocytes in the biosynthesis of CS- HS- and HA-GAGs, and suggest that ethanol-induced alterations of neuronal development may be in part mediated by increased astrocyte GAG levels and neurocan and brevican expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

The authors confirm that the data support their published claims and comply with field standards.

Abbreviations

AMAC:

2-Aminoacridone

ARSB:

Arylsulfatase B

CS:

Chondroitin Sulfate

ECM:

Extracellular Matrix

FASD:

Fetal Alcohol Spectrum Disorders

GAGs:

Glycosaminoglycans

GALNS:

Galactosamine (N-acetyl)-6 Sulfatase

HA:

Hyaluronic Acid

HS:

Heparan Sulfate

NDST:

N-Deaceylase/N-sulfotransferases

PD:

Postnatal Day

PGs:

Proteoglycans

RRID:

Research Resource Identifier

SUMF1:

Sulfatase Modifying Factor 1

TRAP:

Translating ribosome affinity purification

References

  1. Lei Y, Han H, Yuan F, Javeed A, Zhao Y (2017) The brain interstitial system: anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol 157:230–246

    PubMed  Google Scholar 

  2. Nicholson C, Sykova E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21(5):207–215

    CAS  PubMed  Google Scholar 

  3. Yang S, Wang Y, Li K, Tang X, Zhang K, Shi C, Han H, Peng Y (2016) Extracellular space diffusion analysis in the infant and adult rat striatum using magnetic resonance imaging. Int J Dev Neurosci 53:1–7

    PubMed  Google Scholar 

  4. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12):a005058

    PubMed  PubMed Central  Google Scholar 

  6. Kiryushko D, Berezin V, Bock E (2004) Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci 1014:140–154

    CAS  PubMed  Google Scholar 

  7. Martinez R, Gomes FC (2002) Neuritogenesis induced by thyroid hormone-treated astrocytes is mediated by epidermal growth factor/mitogen-activated protein kinase-phosphatidylinositol 3-kinase pathways and involves modulation of extracellular matrix proteins. J Biol Chem 277(51):49311–49318

    CAS  PubMed  Google Scholar 

  8. Tom VJ, Doller CM, Malouf AT, Silver J (2004) Astrocyte-associated fibronectin is critical for axonal regeneration in adult white matter. J Neurosci 24(42):9282–9290

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyata S (1861) Kitagawa H (2017) Formation and remodeling of the brain extracellular matrix in neural plasticity: roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 10:2420–2434

    Google Scholar 

  10. Condomitti G, de Wit J (2018) Heparan sulfate proteoglycans as emerging players in synaptic specificity. Front Mol Neurosci 11:14

    PubMed  PubMed Central  Google Scholar 

  11. Yu P, Pearson CS, Geller HM (2018) Flexible roles for proteoglycan sulfation and receptor signaling. Trends Neurosci 41(1):47–61

    CAS  PubMed  Google Scholar 

  12. Prydz K, Dalen KT (2000) Synthesis and sorting of proteoglycans. J Cell Sci 113(Pt 2):193–205

    CAS  PubMed  Google Scholar 

  13. Bartus K, James ND, Bosch KD, Bradbury EJ (2012) Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol 235(1):5–17

    CAS  PubMed  Google Scholar 

  14. Carulli D, Rhodes KE, Fawcett JW (2007) Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. J Comp Neurol 501(1):83–94

    CAS  PubMed  Google Scholar 

  15. Carulli D, Laabs T, Geller HM, Fawcett JW (2005) Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol 15(1):116–120

    PubMed  Google Scholar 

  16. Howell MD, Gottschall PE (2012) Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment. Neuroscience 217:6–18

    CAS  PubMed  Google Scholar 

  17. Yu C, Griffiths LR, Haupt LM (2017) Exploiting heparan sulfate proteoglycans in human neurogenesis-controlling lineage specification and fate. Front Integr Neurosci 11:28

    PubMed  PubMed Central  Google Scholar 

  18. Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3(7):a004952

    PubMed  PubMed Central  Google Scholar 

  19. Xu D, Esko JD (2014) Demystifying heparan sulfate-protein interactions. Annu Rev Biochem 83:129–157

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith PD, Coulson-Thomas VJ, Foscarin S, Kwok JC, Fawcett JW (2015) “GAG-ing with the neuron”: the role of glycosaminoglycan patterning in the central nervous system. Exp Neurol 274(Pt B):100–114

    CAS  PubMed  Google Scholar 

  21. Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, Barres BA (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486(7403):410–414

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433

    CAS  PubMed  Google Scholar 

  23. Pfrieger FW, Barres BA (1997) Synaptic efficacy enhanced by glial cells in vitro. Science 277(5332):1684–1687

    CAS  PubMed  Google Scholar 

  24. Stipursky J, Spohr TC, Sousa VO, Gomes FC (2012) Neuron-astroglial interactions in cell-fate commitment and maturation in the central nervous system. Neurochem Res 37(11):2402–2418

    CAS  PubMed  Google Scholar 

  25. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291(5504):657–661

    CAS  PubMed  Google Scholar 

  26. Zuchero JB, Barres BA (2015) Glia in mammalian development and disease. Development 142(22):3805–3809

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26(9):891–907

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Moore NH, Costa LG, Shaffer SA, Goodlett DR, Guizzetti M (2009) Shotgun proteomics implicates extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation. J Neurochem 108(4):891–908

    CAS  PubMed  Google Scholar 

  29. Hellemans KG, Sliwowska JH, Verma P, Weinberg J (2010) Prenatal alcohol exposure: fetal programming and later life vulnerability to stress, depression and anxiety disorders. Neurosci Biobehav Rev 34(6):791–807

    CAS  PubMed  Google Scholar 

  30. Riley EP, Infante MA, Warren KR (2011) Fetal alcohol spectrum disorders: an overview. Neuropsychol Rev 21(2):73–80

    PubMed  PubMed Central  Google Scholar 

  31. Donald KA, Eastman E, Howells FM, Adnams C, Riley EP, Woods RP, Narr KL, Stein DJ (2015) Neuroimaging effects of prenatal alcohol exposure on the developing human brain: a magnetic resonance imaging review. Acta Neuropsychiatrica 27(5):251–269

    PubMed  Google Scholar 

  32. Medina AE (2011) Fetal alcohol spectrum disorders and abnormal neuronal plasticity. The Neuroscientist 17(3):274–287

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang X, Bhattacharyya S, Kusumo H, Goodlett CR, Tobacman JK, Guizzetti M (2014) Arylsulfatase B modulates neurite outgrowth via astrocyte chondroitin-4-sulfate: dysregulation by ethanol. Glia 62(2):259–271

    PubMed  Google Scholar 

  34. McCarthy MM (2015) Incorporating sex as a variable in preclinical neuropsychiatric research. Schizophr Bull 41(5):1016–1020

    PubMed  PubMed Central  Google Scholar 

  35. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suarez-Farinas M, Schwarz C, Stephan DA, Surmeier DJ, Greengard P, Heintz N (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135(4):738–748

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Conner DA (2002) Mouse colony management. In: Ausubel FM (ed) Current protocols in molecular biology, ringbou edn. Wiley, 23.8.1–23.8.11

  37. Avadhanula V, Weasner BP, Hardy GG, Kumar JP, Hardy RW (2009) A novel system for the launch of alphavirus RNA synthesis reveals a role for the Imd pathway in arthropod antiviral response. PLoS Pathog 5(9):e1000582

    PubMed  PubMed Central  Google Scholar 

  38. Wang X, Spandidos A, Wang H, Seed B (2012) PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update. Nucleic Acids Res 40:D1144–D1149

    CAS  PubMed  Google Scholar 

  39. Wilhelm CJ, Hashimoto JG, Roberts ML, Zhang X, Goeke CM, Bloom SH, Guizzetti M (2018) Plasminogen activator system homeostasis and its dysregulation by ethanol in astrocyte cultures and the developing brain. Neuropharmacology 138:193–209

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu L, Zhao Z, Yin Q, Zhang X (2019) TTB protects astrocytes against oxygen-glucose deprivation/reoxygenation-induced injury via activation of Nrf2/HO-1 signaling pathway. Front Pharmacol 10:792

    PubMed  PubMed Central  Google Scholar 

  41. Guizzetti M, Costa P, Peters J, Costa LG (1996) Acetylcholine as a mitogen: muscarinic receptor-mediated proliferation of rat astrocytes and human astrocytoma cells. Eur J Pharmacol 297(3):265–273

    CAS  PubMed  Google Scholar 

  42. Guizzetti M, Costa LG (1996) Inhibition of muscarinic receptor-stimulated glial cell proliferation by ethanol. J Neurochem 67(6):2236–2245

    CAS  PubMed  Google Scholar 

  43. Guizzetti M, Chen J, Oram JF, Tsuji R, Dao K, Moller T, Costa LG (2007) Ethanol induces cholesterol efflux and up-regulates ATP-binding cassette cholesterol transporters in fetal astrocytes. J Biol Chem 282(26):18740–18749

    CAS  PubMed  Google Scholar 

  44. Sun X, Li L, Overdier KH, Ammons LA, Douglas IS, Burlew CC, Zhang F, Schmidt EP, Chi L, Linhardt RJ (2015) Analysis of total human urinary glycosaminoglycan disaccharides by liquid chromatography-tandem mass spectrometry. Anal Chem 87(12):6220–6227

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS (2009) Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci USA 106(33):13939–13944

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gavin DP, Hashimoto JG, Lazar NH, Carbone L, Crabbe JC, Guizzetti M (2018) Stable histone methylation changes at proteoglycan network genes following ethanol exposure. Front Genet 9:346

    PubMed  PubMed Central  Google Scholar 

  47. Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci USA 115(8):E1896–E1905

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Y, Li ZX, Jin T, Wang ZY, Zhao P (2017) Tau pathology promotes the reorganization of the extracellular matrix and inhibits the formation of perineuronal nets by regulating the expression and the distribution of hyaluronic acid synthases. J Alzheimers Dis 57(2):395–409

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cargill R, Kohama SG, Struve J, Su W, Banine F, Witkowski E, Back SA, Sherman LS (2012) Astrocytes in aged nonhuman primate brain gray matter synthesize excess hyaluronan. Neurobiol Aging 33(4):830e.813-830e.824

    Google Scholar 

  50. Bhattacharyya S, Kotlo K, Shukla S, Danziger RS, Tobacman JK (2008) Distinct effects of N-acetylgalactosamine-4-sulfatase and galactose-6-sulfatase expression on chondroitin sulfates. J Biol Chem 283(15):9523–9530

    CAS  PubMed  Google Scholar 

  51. Dierks T, Schlotawa L, Frese MA, Radhakrishnan K, von Figura K, Schmidt B (2009) Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease – Lysosomal storage disorders caused by defects of non-lysosomal proteins. Biochim Biophys Acta 1793(4):710–725

    CAS  PubMed  Google Scholar 

  52. Slaker ML, Jorgensen ET, Hegarty DM, Liu X, Kong Y, Zhang F, Linhardt RJ, Brown TE, Aicher SA, Sorg BA (2018) Cocaine exposure modulates perineuronal nets and synaptic excitability of fast-spiking interneurons in the medial prefrontal cortex. eNeuro. https://doi.org/10.1523/ENEURO.0221-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kitagawa H, Tsutsumi K, Tone Y, Sugahara K (1997) Developmental regulation of the sulfation profile of chondroitin sulfate chains in the chicken embryo brain. J Biol Chem 272(50):31377–31381

    CAS  PubMed  Google Scholar 

  54. Guizzetti M, Moore NH, Giordano G, Costa LG (2008) Modulation of neuritogenesis by astrocyte muscarinic receptors. J Biol Chem 283(46):31884–31897

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Guizzetti M, Moore NH, Giordano G, VanDeMark KL, Costa LG (2010) Ethanol inhibits neuritogenesis induced by astrocyte muscarinic receptors. Glia 58(12):1395–1406

    PubMed  PubMed Central  Google Scholar 

  56. Yu X, Nagai J, Khakh BS (2020) Improved tools to study astrocytes. Nat Rev Neurosci 21(3):121–138

    CAS  PubMed  Google Scholar 

  57. Zhang X, Kusumo H, Sakharkar AJ, Pandey SC, Guizzetti M (2014) Regulation of DNA methylation by ethanol induces tissue plasminogen activator expression in astrocytes. J Neurochem 128(3):344–349

    CAS  PubMed  Google Scholar 

  58. Jin J, Tilve S, Huang Z, Zhou L, Geller HM, Yu P (2018) Effect of chondroitin sulfate proteoglycans on neuronal cell adhesion, spreading and neurite growth in culture. Neural Regen Res 13(2):289–297

    PubMed  PubMed Central  Google Scholar 

  59. Pearson CS, Mencio CP, Barber AC, Martin KR, Geller HM (2018) Identification of a critical sulfation in chondroitin that inhibits axonal regeneration. elife 7:e37139

    PubMed  PubMed Central  Google Scholar 

  60. Yi JH, Katagiri Y, Susarla B, Figge D, Symes AJ, Geller HM (2012) Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice. J Comp Neurol 520(15):3295–3313

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Adachi J, Mizoi Y, Fukunaga T, Ogawa Y, Ueno Y, Imamichi H (1991) Degrees of alcohol intoxication in 117 hospitalized cases. J Stud Alcohol 52(5):448–453

    CAS  PubMed  Google Scholar 

  62. Deitrich RA, Harris RA (1996) How much alcohol should I use in my experiments? Alcohol Clin Exp Res 20(1):1–2

    CAS  PubMed  Google Scholar 

  63. Carter RC, Senekal M, Dodge NC, Bechard LJ, Meintjes EM, Molteno CD, Duggan CP, Jacobson JL, Jacobson SW (2017) Maternal alcohol use and nutrition during pregnancy: diet and anthropometry. Alcohol Clin Exp Res 41(12):2114–2127

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Mr. Nicholas Margolies for the critical review of the manuscript and Ms. Shelley H. Bloom and Dr. Clare J. Wilhelm for their technical assistance with astrocyte cultures and treatments.

Funding

This work was supported by the Department of Veterans Affairs Merit Review BX001819, and National Institutes of Health R01AA022948 (MG) and the New York State Spinal Cord Injury Research Board (SCRIB) Grant DOH01-PART2-2017 (RJL).

Author information

Authors and Affiliations

Authors

Contributions

MG conceived the study; MG, XZ, and RJL designed experiments. Material preparation, data collection and analysis were performed by XZ, JGH, XH and FZ; MG and XZ wrote the paper with suggestions from JGH and RJL. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaolu Zhang or Marina Guizzetti.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 516 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hashimoto, J.G., Han, X. et al. Characterization of Glycosaminoglycan Disaccharide Composition in Astrocyte Primary Cultures and the Cortex of Neonatal Rats. Neurochem Res 46, 595–610 (2021). https://doi.org/10.1007/s11064-020-03195-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03195-9

Keywords

Navigation