Skip to main content
Log in

Inhibition of the Vesicular Glutamate Transporter (VGLUT) with Congo Red Analogs: New Binding Insights

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The vesicular glutamate transporter (VGLUT) facilitates the uptake of glutamate (Glu) into neuronal vesicles. VGLUT has not yet been fully characterized pharmacologically but a body of work established that certain azo-dyes bearing two Glu isosteres via a linker were potent inhibitors. However, the distance between the isostere groups that convey potent inhibition has not been delineated. This report describes the synthesis and pharmacologic assessment of Congo Red analogs that contain one or two glutamate isostere or mimic groups; the latter varied in the interatomic distance and spacer properties to probe strategic binding interactions within VGLUT. The more potent inhibitors had two glutamate isosteres symmetrically linked to a central aromatic group and showed IC50 values ~ 0.3–2.0 μM at VGLUT. These compounds contained phenyl, diphenyl ether (PhOPh) or 1,2-diphenylethane as the linker connecting 4-aminonaphthalene sulfonic acid groups. A homology model for VGLUT2 using d-galactonate transporter (DgoT) to dock and identify R88, H199 and F219 as key protein interactions with Trypan Blue, Congo Red and selected potent analogs prepared and tested in this report.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

Abbreviations

Glu:

Glutamate

VGLUT:

Vesicular glutamate transporter

DgoT:

d-galactonate transporter

TB:

Trypan Blue

CR:

Congo Red

4-ANS:

4-Aminonaphthalene sulfonic acid

References

  1. Takeda K, Ishida A, Takahashi K, Ueda T (2012) Synaptic vesicles are capable of synthesizing the VGLUT substrate glutamate from alpha-ketoglutarate for vesicular loading. J Neurochem 121:184–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bridges RJ, Patel SA (2009) Pharmacology of Glutamate Transport in the CNS: substrates and inhibitors of excitatoryamino acid transporters (EAATs) and the glutamate/cystine exchanger system xc−. In: Napier S, Bingham M (eds) Transporters as targets for drugs. Springer, Berlin , pp 187–222

    Google Scholar 

  3. Juge N, Gray JA, Omote H, Miyaji T, Inoue T, Hara C, Uneyama H, Edwards RH, Nicoll RA, Moriyama Y (2010) Metabolic control of vesicular glutamate transport and release. Neuron 68:99–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wolosker H, de Souza DO, de Meis L (1996) Regulation of glutamate transport into synaptic vesicles by chloride and proton gradient. J Biol Chem 271:11726–11731

    Article  CAS  PubMed  Google Scholar 

  5. Preobraschenski J, Zander JF, Suzuki T, Ahnert-Hilger G, Jahn R (2014) Vesicular glutamate transporters use flexible anion and cation binding sites for efficient accumulation of neurotransmitter. Neuron 84:1287–1301

    Article  CAS  PubMed  Google Scholar 

  6. Gonzalez MI, Robinson MB (2004) Neurotransmitter transporters: why dance with so many partners? Curr Opin Pharmacol 4:30–35

    Article  CAS  PubMed  Google Scholar 

  7. Hinoi E, Takarada T, Tsuchihashi Y, Yoneda Y (2005) Glutamate transporters as drug targets. Curr Drug Targets CNS Neurol Disord 4:211–220

    Article  CAS  PubMed  Google Scholar 

  8. Moriyama Y, Yamamoto A (2004) Glutamatergic chemical transmission: look! Here, there, and anywhere. J Biochem 135:155–163

    Article  CAS  PubMed  Google Scholar 

  9. Reimer RJ, Edwards RH (2004) Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch 447:629–635

    Article  CAS  PubMed  Google Scholar 

  10. Reimer RJ, Fremeau RT Jr, Bellocchio EE, Edwards RH (2001) The essence of excitation. Curr Opin Cell Biol 13:417–421

    Article  CAS  PubMed  Google Scholar 

  11. Takamori S (2006) VGLUTs: “exciting” times for glutamatergic research? Neurosci Res 55:343–351

    Article  CAS  PubMed  Google Scholar 

  12. Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Brain Res Rev 45:250–265

    Article  CAS  PubMed  Google Scholar 

  13. Zhou Y, Danbolt NC (2013) GABA and glutamate transporters in brain. Front Endocrinol 4:165

    Article  Google Scholar 

  14. Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 179:4–29

    Article  CAS  PubMed  Google Scholar 

  15. Goh GY, Huang H, Ullman J, Borre L, Hnasko TS, Trussell LO, Edwards RH (2011) Presynaptic regulation of quantal size: K+/H+ exchange stimulates vesicular glutamate transport. Nat Neurosci 14:1285–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilson NR, Kang J, Hueske EV, Leung T, Varoqui H, Murnick JG, Erickson JD, Liu G (2005) Presynaptic regulation of quantal size by the vesicular glutamate transporter VGLUT1. J Neurosci 25:6221–6234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaudhry FA, Edwards RH, Fonnum F (2008) Vesicular neurotransmitter transporters as targets for endogenous and exogenous toxic substances. Annu Rev Pharmacol Toxicol 48:277–301

    Article  CAS  PubMed  Google Scholar 

  18. Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620

    Article  CAS  PubMed  Google Scholar 

  19. Almqvist J, Huang Y, Laaksonen A, Wang DN, Hovmoller S (2007) Docking and homology modeling explain inhibition of the human vesicular glutamate transporters. Protein Sci 16:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eudes A, Kunji ER, Noiriel A, Klaus SM, Vickers TJ, Beverley SM, Gregory JF 3rd, Hanson AD (2010) Identification of transport-critical residues in a folate transporter from the folate-biopterin transporter (FBT) family. J Biol Chem 285:2867–2875

    Article  CAS  PubMed  Google Scholar 

  21. Jeon J, Yang JS, Kim S (2009) Integration of evolutionary features for the identification of functionally important residues in major facilitator superfamily transporters. PLoS Comput Biol 5:e1000522

    Article  PubMed  PubMed Central  Google Scholar 

  22. Khare P, Mulakaluri A, Parsons SM (2010) Search for the acetylcholine and vesamicol binding sites in vesicular acetylcholine transporter: the region around the lumenal end of the transport channel. J Neurochem 115:984–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Law CJ, Enkavi G, Wang DN, Tajkhorshid E (2009) Structural basis of substrate selectivity in the glycerol-3-phosphate: phosphate antiporter GlpT. Biophys J 97:1346–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patching SG, Psakis G, Baldwin SA, Baldwin J, Henderson PJ, Middleton DA (2008) Relative substrate affinities of wild-type and mutant forms of the Escherichia coli sugar transporter GalP determined by solid-state NMR. Mol Membr Biol 25:474–484

    Article  CAS  PubMed  Google Scholar 

  25. Yang Q, Wang X, Ye L, Mentrikoski M, Mohammadi E, Kim YM, Maloney PC (2005) Experimental tests of a homology model for OxlT, the oxalate transporter of Oxalobacter formigenes. Proc Natl Acad Sci USA 102:8513–8518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Juge N, Yoshida Y, Yatsushiro S, Omote H, Moriyama Y (2006) Vesicular glutamate transporter contains two independent transport machineries. J Biol Chem 281:39499–39506

    Article  CAS  PubMed  Google Scholar 

  27. Adler J, Bibi E (2004) Determinants of substrate recognition by the Escherichia coli multidrug transporter MdfA identified on both sides of the membrane. J Biol Chem 279:8957–8965

    Article  CAS  PubMed  Google Scholar 

  28. Adler J, Lewinson O, Bibi E (2004) Role of a conserved membrane-embedded acidic residue in the multidrug transporter MdfA. Biochemistry 43:518–525

    Article  CAS  PubMed  Google Scholar 

  29. Adler J, Bibi E (2005) Promiscuity in the geometry of electrostatic interactions between the Escherichia coli multidrug resistance transporter MdfA and cationic substrates. J Biol Chem 280:2721–2729

    Article  CAS  PubMed  Google Scholar 

  30. Tsigelny IF, Greenberg J, Kouznetsova V, Nigam SK (2008) Modeling of glycerol-3-phosphate transporter suggests a potential “tilt” mechanism involved in its function. J Bioinform Comput Biol 6:885–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Varoqui H, Erickson JD (1997) Vesicular neurotransmitter transporters. Potential sites for the regulation of synaptic function. Mol Neurobiol 15:165–191

    Article  CAS  PubMed  Google Scholar 

  32. Kish PE, Ueda T (1989) Glutamate accumulation into synaptic vesicles. Methods Enzymol 174:9–25

    Article  CAS  PubMed  Google Scholar 

  33. Carrigan CN, Esslinger CS, Bartlett RD, Bridges RJ, Thompson CM (1999) Quinoline-2,4-dicarboxylic acids: synthesis and evaluation as inhibitors of the glutamate vesicular transport system. Bioorg Med Chem Lett 9:2607–2612

    Article  CAS  PubMed  Google Scholar 

  34. Carrigan CN, Patel SA, Cox HD, Bolstad ES, Gerdes JM, Smith WE, Bridges RJ, Thompson CM (2014) The development of benzo- and naphtho-fused quinoline-2,4-dicarboxylic acids as vesicular glutamate transporter (VGLUT) inhibitors reveals a possible role for neuroactive steroids. Bioorg Med Chem Lett 24:850–854

    Article  CAS  PubMed  Google Scholar 

  35. Krieger E, Vriend G (2014) YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 30:2981–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leano JB, Batarni S, Eriksen J, Juge N, Pak JE, Kimura-Someya T, Robles-Colmenares Y, Moriyama Y, Stroud RM, Edwards RH (2019) Structures suggest a mechanism for energy coupling by a family of organic anion transporters. PLoS Biol 17:e3000260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  PubMed  Google Scholar 

  38. Jones DT, Taylor WR, Thornton JM (1994) A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049

    Article  CAS  PubMed  Google Scholar 

  39. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thompson CM, Chao CK (2020) VGLUT substrates and inhibitors: a computational viewpoint. Biochim Biophys Acta Biomembr 183175

  42. Zhang FX, Ge SN, Dong YL, Shi J, Feng YP, Li Y, Li YQ, Li JL (2018) Vesicular glutamate transporter isoforms: the essential players in the somatosensory systems. Prog Neurobiol 171:72–89

    Article  CAS  PubMed  Google Scholar 

  43. Li F, Eriksen J, Finer-Moore J, Chang R, Nguyen P, Bowen A, Myasnikov A, Yu Z, Bulkley D, Cheng Y, Edwards RH, Stroud RM (2020) Ion transport and regulation in a synaptic vesicle glutamate transporter. Science 368:893–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Preobraschenski J, Cheret C, Ganzella M, Zander JF, Richter K, Schenck S, Jahn R, Ahnert-Hilger G (2018) Dual and direction-selective mechanisms of phosphate transport by the vesicular glutamate transporter. Cell Rep 23:535–545

    Article  CAS  PubMed  Google Scholar 

  45. Iwunze MO (2010) Aqueous photophysical parameters of Congo Red. Spectrosc Lett 43:16–21

    Article  CAS  Google Scholar 

  46. Carlson MD, Kish PE, Ueda T (1989) Glutamate uptake into synaptic vesicles: competitive inhibition by bromocriptine. J Neurochem 53:1889–1894

    Article  CAS  PubMed  Google Scholar 

  47. Naito S, Ueda T (1985) Characterization of glutamate uptake into synaptic vesicles. J Neurochem 44:99–109

    Article  CAS  PubMed  Google Scholar 

  48. Bartlett RD (1999) Identification and characterization of inhibitors of L-glutamate transport into rat brain synaptic vesicles. PhD Thesis; The University of Montana, Missoula

  49. Neale SA, Copeland CS, Salt TE (2014) Effect of VGLUT inhibitors on glutamatergic synaptic transmission in the rodent hippocampus and prefrontal cortex. Neurochem Int 73:159–165

    Article  CAS  PubMed  Google Scholar 

  50. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 43:W443-447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roseth S, Fykse EM, Fonnum F (1998) Uptake of L-glutamate into synaptic vesicles: competitive inhibition by dyes with biphenyl and amino- and sulphonic acid-substituted naphthyl groups. Biochem Pharmacol 56:1243–1249

    Article  CAS  PubMed  Google Scholar 

  52. Favre-Besse FC, Poirel O, Bersot T, Kim-Grellier E, Daumas S, El Mestikawy S, Acher FC, Pietrancosta N (2014) Design, synthesis and biological evaluation of small-azo-dyes as potent Vesicular Glutamate Transporters inhibitors. Eur J Med Chem 78:236–247

    Article  CAS  PubMed  Google Scholar 

  53. Carrigan CN, Bartlett RD, Esslinger CS, Cybulski KA, Tongcharoensirikul P, Bridges RJ, Thompson CM (2002) Synthesis and in vitro pharmacology of substituted quinoline-2,4-dicarboxylic acids as inhibitors of vesicular glutamate transport. J Med Chem 45:2260–2276

    Article  CAS  PubMed  Google Scholar 

  54. Thompson CM, Davis E, Carrigan CN, Cox HD, Bridges RJ, Gerdes JM (2005) Inhibitor of the glutamate vesicular transporter (VGLUT). Curr Med Chem 12:2041–2056

    Article  CAS  PubMed  Google Scholar 

  55. Tamura Y, Ogita K, Ueda T (2014) A new VGLUT-specific potent inhibitor: pharmacophore of Brilliant Yellow. Neurochem Res 39:117–128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr David Holley for assistance with the molecular modeling and the University of Montana’s Center for Structural & Functional Neuroscience. Research in the authors laboratories is funded by a grant to The Center for Biomolecular and Structural Dynamics from the National Institutes of Health, P20GM103546.

Funding

Financial support for University of Montana Molecular Computational and Magnetic Resonance Core Facilities utilized in this study was provided by NIH NIGMS P20GM103546 (S. Sprang, PI) and gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written by C.M.T. with contributions by all authors. DH, JZ, SP and C-KC conducted the investigation, methodology and formal analyses. Conceptualization was conducted by JG, RB and CT. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Charles M. Thompson.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hitt, D.M., Zwicker, J.D., Chao, CK. et al. Inhibition of the Vesicular Glutamate Transporter (VGLUT) with Congo Red Analogs: New Binding Insights. Neurochem Res 46, 494–503 (2021). https://doi.org/10.1007/s11064-020-03182-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03182-0

Keywords

Navigation