Skip to main content
Log in

Liver X Receptor α in Sciatic Nerve Exerts an Alleviating Effect on Neuropathic Pain Behaviors Induced by Crush Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Peripheral nerve injury often leads to neuropathic pain. In the present study, we assessed the role of liver x receptor alpha (LXRα), an oxysterol regulated nuclear transcription factor that promotes reverse cholesterol transport and alternative (M2) macrophage activation, in the development of neuropathic pain. We found that compared to WT mice, in LXRα knockout mice the development of mechanical allodynia following sciatic nerve crush was accelerated and the duration was prolonged. Furthermore, the expression of M1-like macrophage marker iNOS and M1-like macrophages inducer hydrogen peroxide (H2O2) was increased, whereas expression of M2 macrophage marker arginase-1 (Arg-1) and interleukin-10 (IL-10) was reduced in the sciatic nerve of LXRα knockout mice. Moreover, peri-sciatic administration of LXRs agonist GW3965, immediately after the nerve crush, into wild type mice, suppressed the mechanical allodynia induced by crush injury. GW3965 also suppressed the expression of iNOS and production of H2O2 in the injured nerve and enhanced the expression of IL-10 and Arg-1. Importantly, peri-sciatic administration of IL-10 neutralization antibody prevented the alleviating effect of GW3965 on mechanical allodynia. Altogether, these results indicates that the lack of LXRα in the sciatic nerve results in an augmented inflammatory profile of macrophages, which ultimately speed up the development of neuropathic pain and dampen its recovery following nerve injury. Activation of LXRα by its agonist might rebalance the neuroprotective and neurotoxic macrophage phenotypes, and thus alleviate the neuropathic pain behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bowsher D (1991) Neurogenic pain syndromes and their management. Br Med Bull 47(3):644–666

    Article  CAS  PubMed  Google Scholar 

  2. Zelcer N, Tontonoz P (2006) Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 116(3):607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu RT, Gong JP (2012) The role of neutrophil gelatinase-associated lipocalin (NGAL) in the glycolipid metabolism and inflammation. Sheng Li Ke Xue Jin Zhan 43(3):198–201

    CAS  PubMed  Google Scholar 

  4. Fessler MB (2008) Liver X receptor: crosstalk node for the signaling of lipid metabolism, carbohydrate metabolism, and innate immunity. Curr Signal Transduct Ther 3(2):75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9(2):213–219

    Article  CAS  PubMed  Google Scholar 

  6. Hichor M, Sundaram VK, Eid SA, Abdel-Rassoul R, Petit PX, Borderie D et al (2018) Liver X Receptor exerts a protective effect against the oxidative stress in the peripheral nerve. Sci Rep 8(1):2524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Han S, Zhuang H, Shumyak S, Wu J, Xie C, Li H et al (2018) Liver X receptor agonist therapy prevents diffuse alveolar hemorrhage in Murine Lupus by repolarizing macrophages. Front Immunol 9:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Skaggs BJ, Hahn BH, McMahon M (2012) Accelerated atherosclerosis in patients with SLE–mechanisms and management. Nat Rev Rheumatol 8(4):214–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gavini CK, Bookout AL, Bonomo R, Gautron L, Lee S, Mansuy-Aubert V (2018) Liver X receptors protect dorsal root ganglia from obesity-induced endoplasmic reticulum stress and mechanical allodynia. Cell Rep. 25(2):271–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu J, Feng YW, Liu L, Wang W, Zhong XX, Wei XH et al (2017) Liver X receptor alpha is involved in counteracting mechanical allodynia by inhibiting neuroinflammation in the spinal dorsal horn. Anesthesiology 127(3):534–547

    Article  PubMed  Google Scholar 

  11. Siqueira Mietto B, Kroner A, Girolami EI, Santos-Nogueira E, Zhang J, David S (2015) Role of IL-10 in resolution of inflammation and functional recovery after peripheral nerve injury. J Neurosci 35(50):16431–16442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. De Santa F, Vitiello L, Torcinaro A, Ferraro E (2019) The role of metabolic remodeling in macrophage polarization and its effect on skeletal muscle regeneration. Antioxidants Redox Signal 12:1553–1598

    Article  CAS  Google Scholar 

  13. Roszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm 2015:816460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. McGrath JC, Lilley E (2015) Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol 172(13):3189–3193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mietto BS, Jurgensen S, Alves L, Pecli C, Narciso MS, Assuncao-Miranda I et al (2013) Lack of galectin-3 speeds Wallerian degeneration by altering TLR and pro-inflammatory cytokine expressions in injured sciatic nerve. Eur J Neurosci 37(10):1682–1690

    Article  PubMed  Google Scholar 

  16. Wei XH, Yang T, Wu Q, Xin W, Wu JL, Wang YQ et al (2012) Peri-sciatic administration of recombinant rat IL-1beta induces mechanical allodynia by activation of src-family kinases in spinal microglia in rats. Exp Neurol 234(2):389–397

    Article  CAS  PubMed  Google Scholar 

  17. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

    Article  CAS  PubMed  Google Scholar 

  18. Xu J, Wei X, Gao F, Zhong X, Guo R, Ji Y et al (2019) NADPH oxidase 2 derived ROS contributes to LTP of C-fiber evoked field potentials in spinal dorsal horn and persistent mirror-image pain following high frequency stimulus of the sciatic nerve. Pain. https://doi.org/10.1097/j.pain.0000000000001761

    Article  PubMed  Google Scholar 

  19. Regnier M, Polizzi A, Lukowicz C, Smati S, Lasserre F, Lippi Y et al (2019) The protective role of liver X receptor (LXR) during fumonisin B1-induced hepatotoxicity. Arch Toxicol 93(2):505–517

    Article  CAS  PubMed  Google Scholar 

  20. Zheng S, Yang H, Chen Z, Zheng C, Lei C, Lei B (2015) Activation of liver X receptor protects inner retinal damage induced by N-methyl-D-aspartate. Invest Ophthalmol Vis Sci 56(2):1168–1180

    Article  PubMed  Google Scholar 

  21. Rahmati-Ahmadabad S, Shirvani H, Ghanbari-Niaki A, Rostamkhani F (2018) The effects of high-intensity interval training on reverse cholesterol transport elements: a way of cardiovascular protection against atherosclerosis. Life Sci 209:377–382

    Article  CAS  PubMed  Google Scholar 

  22. Yang M, Wang R, Sun J, Yu K, Chen B, Xu L et al (2015) The liver X receptor agonist TO901317 protects mice against cisplatin-induced kidney injury. Exp Biol Med 240(12):1717–1727

    Article  CAS  Google Scholar 

  23. Andersson S, Gustafsson N, Warner M, Gustafsson JA (2005) Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proc Natl Acad Sci USA 102(10):3857–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meffre D, Shackleford G, Hichor M, Gorgievski V, Tzavara ET, Trousson A et al (2015) Liver X receptors alpha and beta promote myelination and remyelination in the cerebellum. Proc Natl Acad Sci USA 112(24):7587–7592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA et al (2000) Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci USA 97(22):12097–12102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K et al (2000) Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 289(5484):1524–1529

    Article  CAS  PubMed  Google Scholar 

  27. Yu XH, Qian K, Jiang N, Zheng XL, Cayabyab FS, Tang CK (2014) ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin Chim Acta 428:82–88

    Article  CAS  PubMed  Google Scholar 

  28. Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ (2002) Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem 277(21):18793–18800

    Article  CAS  PubMed  Google Scholar 

  29. Zelcer N, Hong C, Boyadjian R, Tontonoz P (2009) LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 325(5936):100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krisanova N, Sivko R, Kasatkina L (1822) Borisova T (2012) Neuroprotection by lowering cholesterol: a decrease in membrane cholesterol content reduces transporter-mediated glutamate release from brain nerve terminals. Biochem Biophys Acta 10:1553–1561

    Google Scholar 

  31. Zhu HQ, Xu J, Shen KF, Pang RP, Wei XH, Liu XG (2015) Bulleyaconitine A depresses neuropathic pain and potentiation at C-fiber synapses in spinal dorsal horn induced by paclitaxel in rats. Exp Neurol 273:263–272

    Article  CAS  PubMed  Google Scholar 

  32. Deng M, Chen SR, Pan HL (2019) Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain. Cell Mol Life Sci CMLS 76(10):1889–1899

    Article  CAS  PubMed  Google Scholar 

  33. Huang W, Ghisletti S, Saijo K, Gandhi M, Aouadi M, Tesz GJ et al (2011) Coronin 2A mediates actin-dependent de-repression of inflammatory response genes. Nature 470(7334):414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schulman IG (2017) Liver X receptors link lipid metabolism and inflammation. FEBS Lett 591(19):2978–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pradel LC, Mitchell AJ, Zarubica A, Dufort L, Chasson L, Naquet P et al (2009) ATP-binding cassette transporter hallmarks tissue macrophages and modulates cytokine-triggered polarization programs. Eur J Immunol 39(8):2270–2280

    Article  CAS  PubMed  Google Scholar 

  36. Li P, Spann NJ, Kaikkonen MU, Lu M, Oh DY, Fox JN et al (2013) NCoR repression of LXRs restricts macrophage biosynthesis of insulin-sensitizing omega 3 fatty acids. Cell 155(1):200–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim SY, Lim EJ, Yoon YS, Ahn YH, Park EM, Kim HS et al (2016) Liver X receptor and STAT1 cooperate downstream of Gas6/Mer to induce anti-inflammatory arginase 2 expression in macrophages. Sci Rep 6:29673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marathe C, Bradley MN, Hong C, Lopez F, Ruiz de Galarreta CM, Tontonoz P et al (2006) The arginase II gene is an anti-inflammatory target of liver X receptor in macrophages. J Biol Chem 281(43):32197–32206

    Article  CAS  PubMed  Google Scholar 

  39. Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J (2019) Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 224(2):242–253

    Article  CAS  PubMed  Google Scholar 

  40. Kohchi C, Inagawa H, Nishizawa T, Soma G (2009) ROS and innate immunity. Anticancer Res 29(3):817–821

    CAS  PubMed  Google Scholar 

  41. Padgett LE, Burg AR, Lei W, Tse HM (2015) Loss of NADPH oxidase-derived superoxide skews macrophage phenotypes to delay type 1 diabetes. Diabetes 64(3):937–946

    Article  CAS  PubMed  Google Scholar 

  42. Rani V, Deep G, Singh RK, Palle K, Yadav UC (2006) Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci 148:183–193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Beijing, People’s Republic of China. Nos. 81870969, 81471250); Nature Science Foundation of Guangdong Province of China (Guangzhou, People’s Republic of China, No. 2019A1515011855).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruixian Guo or Xuhong Wei.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Z., Huang, R., Xu, J. et al. Liver X Receptor α in Sciatic Nerve Exerts an Alleviating Effect on Neuropathic Pain Behaviors Induced by Crush Injury. Neurochem Res 46, 358–366 (2021). https://doi.org/10.1007/s11064-020-03171-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03171-3

Keywords

Navigation