Skip to main content

Advertisement

Log in

C-phycocyanin Mitigates Cognitive Impairment in Doxorubicin-Induced Chemobrain: Impact on Neuroinflammation, Oxidative Stress, and Brain Mitochondrial and Synaptic Alterations

  • Brief Communication
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chemotherapy-induced cognitive impairment (CICI) is a common detrimental effect of cancer treatment, occurring in up to 75% of cancer patients. The widely utilized chemotherapeutic agent doxorubicin (DOX) has been implicated in cognitive decline, mostly via cytokine-induced neuroinflammatory and oxidative and mitochondrial damage to brain tissues. C-phycocyanin (CP) has previously been shown to have potent anti-inflammatory, antioxidant, and mitochondrial protective properties. Therefore, this present study was aimed to investigate the neuroprotective effects of CP against DOX-elicited cognitive impairment and explore the underlying mechanisms. CP treatment (50 mg/kg) significantly improved behavioral deficits in DOX-treated mice. Furthermore, CP suppressed DOX-induced neuroinflammation and oxidative stress, mitigated mitochondrial abnormalities, rescued dendritic spine loss, and increased synaptic density in the hippocampus of DOX-treated mice. Our results suggested that CP improves established DOX-induced cognitive deficits, which could be explained at least partly by inhibition of neuroinflammatory and oxidant stress and attenuation of mitochondrial and synaptic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

CICI:

Chemotherapy-induced cognitive impairment

CP:

C-phycocyanin

DOX:

Doxorubicin

mPTP:

Mitochondrial permeability transition pore

GSH:

Glutathione

MM:

Mitochondrial membrane potential

MDA:

Malondialdehyde

MWM:

Morris water maze

PSD95:

Postsynaptic density protein 95

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  1. Asher A (2011) Cognitive dysfunction among cancer survivors. Am J Phys Med Rehabil 90:S16-26

    Article  Google Scholar 

  2. Janelsins MC, Kohli S, Mohile SG, Usuki K, Ahles TA, Morrow GR (2011) An update on cancer- and chemotherapy-related cognitive dysfunction: current status. Semin Oncol 38:431–438

    Article  Google Scholar 

  3. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16:3267–3285

    Article  CAS  Google Scholar 

  4. Aluise CD, Sultana R, Tangpong J, Vore M, St Clair D, Moscow JA, Butterfield DA (2010) Chemo brain (chemo fog) as a potential side effect of doxorubicin administration: role of cytokine-induced, oxidative/nitrosative stress in cognitive dysfunction. Adv Exp Med Biol 678:147–156

    Article  CAS  Google Scholar 

  5. Kwatra M, Jangra A, Mishra M, Sharma Y, Ahmed S, Ghosh P, Kumar V, Vohora D, Khanam R (2016) Naringin and sertraline ameliorate doxorubicin-induced behavioral deficits through modulation of serotonin level and mitochondrial complexes protection pathway in rat hippocampus. Neurochem Res 41:2352–2366

    Article  CAS  Google Scholar 

  6. Aluise CD, Miriyala S, Noel T, Sultana R, Jungsuwadee P, Taylor TJ, Cai J, Pierce WM, Vore M, Moscow JA, St Clair DK, Butterfield DA (2011) 2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-alpha release: implications for the reactive oxygen species-mediated mechanisms of chemobrain. Free Radic Biol Med 50:1630–1638

    Article  CAS  Google Scholar 

  7. Tangpong J, Cole MP, Sultana R, Joshi G, Estus S, Vore M, St Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA (2006) Adriamycin-induced, TNF-alpha-mediated central nervous system toxicity. Neurobiol Dis 23:127–139

    Article  CAS  Google Scholar 

  8. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65:157–170

    Article  CAS  Google Scholar 

  9. Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhaes J, Ascensao A (2018) The beneficial role of exercise in mitigating doxorubicin-induced mitochondrionopathy. Biochim Biophys Acta Rev Cancer 1869:189–199

    Article  CAS  Google Scholar 

  10. Marques-Aleixo I, Santos-Alves E, Balca MM, Moreira PI, Oliveira PJ, Magalhaes J, Ascensao A (2016) Physical exercise mitigates doxorubicin-induced brain cortex and cerebellum mitochondrial alterations and cellular quality control signaling. Mitochondrion 26:43–57

    Article  CAS  Google Scholar 

  11. Romay C, Gonzalez R, Ledon N, Remirez D, Rimbau V (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216

    Article  CAS  Google Scholar 

  12. Bermejo-Bescos P, Pinero-Estrada E, Villar del Fresno AM (2008) Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron-induced toxicity in SH-SY5Y neuroblastoma cells. Toxicol In Vitro 22:1496–1502

    Article  CAS  Google Scholar 

  13. Chamorro G, Perez-Albiter M, Serrano-Garcia N, Mares-Samano JJ, Rojas P (2006) Spirulina maxima pretreatment partially protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Nutr Neurosci 9:207–212

    Article  Google Scholar 

  14. Penton-Rol G, Martinez-Sanchez G, Cervantes-Llanos M, Lagumersindez-Denis N, Acosta-Medina EF, Falcon-Cama V, Alonso-Ramirez R, Valenzuela-Silva C, Rodriguez-Jimenez E, Llopiz-Arzuaga A, Marin-Prida J, Lopez-Saura PA, Guillen-Nieto GE, Penton-Arias E (2011) C-Phycocyanin ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Int Immunopharmacol 11:29–38

    Article  CAS  Google Scholar 

  15. Fernandez-Rojas B, Rodriguez-Rangel DS, Granados-Castro LF, Negrette-Guzman M, Leon-Contreras JC, Hernandez-Pando R, Molina-Jijon E, Reyes JL, Zazueta C, Pedraza-Chaverri J (2015) C-phycocyanin prevents cisplatin-induced mitochondrial dysfunction and oxidative stress. Mol Cell Biochem 406:183–197

    Article  CAS  Google Scholar 

  16. Liao D, Xiang D, Dang R, Xu P, Wang J, Han W, Fu Y, Yao D, Cao L, Jiang P (2018) Neuroprotective Effects of dl-3-n-butylphthalide against doxorubicin-induced neuroinflammation, oxidative stress, endoplasmic reticulum stress, and behavioral changes. Oxid Med Cell Longev 2018:9125601

    PubMed  PubMed Central  Google Scholar 

  17. Mitra S, Siddiqui WA, Khandelwal S (2015) C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: a comparative efficacy evaluation with N-acetyl cysteine in adult rat brain. Chem Biol Interact 238:138–150

    Article  CAS  Google Scholar 

  18. Wang D, Liu X, Liu Y, Shen G, Zhu X, Li S (2017) Treatment effects of Cardiotrophin-1 (CT-1) on streptozotocin-induced memory deficits in mice. Exp Gerontol 92:42–45

    Article  Google Scholar 

  19. Wang D, Liu L, Li S, Wang C (2018) Effects of paeoniflorin on neurobehavior, oxidative stress, brain insulin signaling, and synaptic alterations in intracerebroventricular streptozotocin-induced cognitive impairment in mice. Physiol Behav 191:12–20

    Article  CAS  Google Scholar 

  20. Lin S, Ren A, Wang L, Huang Y, Wang Y, Wang C, Greene ND (2018) Oxidative stress and apoptosis in benzo[a]pyrene-induced neural tube defects. Free Radic Biol Med 116:149–158

    Article  CAS  Google Scholar 

  21. Dragicevic N, Mamcarz M, Zhu Y, Buzzeo R, Tan J, Arendash GW, Bradshaw PC (2010) Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer’s transgenic mice. J Alzheimers Dis 20(Suppl 2):S535–S550

    Article  Google Scholar 

  22. Wang D, Liu X, Liu Y, Li S, Wang C (2017) The effects of cardiotrophin-1 on early synaptic mitochondrial dysfunction and synaptic pathology in APPswe/PS1dE9 mice. J Alzheimers Dis 59:1255–1267

    Article  CAS  Google Scholar 

  23. Dragicevic N, Smith A, Lin X, Yuan F, Copes N, Delic V, Tan J, Cao C, Shytle RD, Bradshaw PC (2011) Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction. J Alzheimers Dis 26:507–521

    Article  CAS  Google Scholar 

  24. Dragicevic N, Delic V, Cao C, Copes N, Lin X, Mamcarz M, Wang L, Arendash GW, Bradshaw PC (2012) Caffeine increases mitochondrial function and blocks melatonin signaling to mitochondria in Alzheimer’s mice and cells. Neuropharmacology 63:1368–1379

    Article  CAS  Google Scholar 

  25. Wang D, Dong X, Wang B, Liu Y, Li S (2019) Geraniin attenuates lipopolysaccharide-induced cognitive impairment in mice by inhibiting toll-like receptor 4 activation. J Agric Food Chem 67:10079–10088

    Article  CAS  Google Scholar 

  26. Zimmer P, Mierau A, Bloch W, Struder HK, Hulsdunker T, Schenk A, Fiebig L, Baumann FT, Hahn M, Reinart N, Hallek M, Elter T (2015) Post-chemotherapy cognitive impairment in patients with B-cell non-Hodgkin lymphoma: a first comprehensive approach to determine cognitive impairments after treatment with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone or rituximab and bendamustine. Leuk Lymphoma 56:347–352

    Article  CAS  Google Scholar 

  27. Butterfield DA (2014) The 2013 SFRBM discovery award: selected discoveries from the butterfield laboratory of oxidative stress and its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment. Free Radic Biol Med 74:157–174

    Article  CAS  Google Scholar 

  28. Cardoso CV, de Barros MP, Bachi ALL, Bernardi MM, Kirsten TB, de Fatima MMM, Rocha PRD, da Silva RP, Bondan EF (2020) Chemobrain in rats: behavioral, morphological, oxidative and inflammatory effects of doxorubicin administration. Behav Brain Res 378:112233

    Article  CAS  Google Scholar 

  29. Varatharaj A, Galea I (2017) The blood-brain barrier in systemic inflammation. Brain Behav Immun 60:1–12

    Article  CAS  Google Scholar 

  30. Joshi G, Sultana R, Tangpong J, Cole MP, St Clair DK, Vore M, Estus S, Butterfield DA (2005) Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: insight into chemobrain. Free Radic Res 39:1147–1154

    Article  CAS  Google Scholar 

  31. Patel A, Mishra S, Ghosh PK (2006) Antioxidant potential of C-phycocyanin isolated from cyanobacterial species Lyngbya, Phormidium and Spirulina spp. Indian J Biochem Biophys 43:25–31

    CAS  PubMed  Google Scholar 

  32. Vichaya EG, Chiu GS, Krukowski K, Lacourt TE, Kavelaars A, Dantzer R, Heijnen CJ, Walker AK (2015) Mechanisms of chemotherapy-induced behavioral toxicities. Front Neurosci 9:131

    Article  Google Scholar 

  33. Doll DN, Rellick SL, Barr TL, Ren X, Simpkins JW (2015) Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem 132:443–451

    Article  CAS  Google Scholar 

  34. Marin-Prida J, Penton-Rol G, Rodrigues FP, Alberici LC, Stringhetta K, Leopoldino AM, Naal Z, Polizello AC, Llopiz-Arzuaga A, Rosa MN, Liberato JL, Santos WF, Uyemura SA, Penton-Arias E, Curti C, Pardo-Andreu GL (2012) C-Phycocyanin protects SH-SY5Y cells from oxidative injury, rat retina from transient ischemia and rat brain mitochondria from Ca2+/phosphate-induced impairment. Brain Res Bull 89:159–167

    Article  CAS  Google Scholar 

  35. Lomeli N, Di K, Czerniawski J, Guzowski JF, Bota DA (2017) Cisplatin-induced mitochondrial dysfunction is associated with impaired cognitive function in rats. Free Radic Biol Med 102:274–286

    Article  CAS  Google Scholar 

  36. Chiu GS, Maj MA, Rizvi S, Dantzer R, Vichaya EG, Laumet G, Kavelaars A, Heijnen CJ (2017) Pifithrin-mu prevents cisplatin-induced chemobrain by preserving neuronal mitochondrial function. Cancer Res 77:742–752

    Article  CAS  Google Scholar 

  37. Winocur G, Berman H, Nguyen M, Binns MA, Henkelman M, van Eede M, Piquette-Miller M, Sekeres MJ, Wojtowicz JM, Yu J, Zhang H, Tannock IF (2018) Neurobiological mechanisms of chemotherapy-induced cognitive impairment in a transgenic model of breast cancer. Neuroscience 369:51–65

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by National Natural Science Foundation of China (U1804174), Science and Technology Innovation Talents in the Universities of Henan Province (20HASTIT044), Henan Provincial Key Research and Development and Promotion Project (192102310081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanqiang Li or Dongmei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhao, Y., Wang, L. et al. C-phycocyanin Mitigates Cognitive Impairment in Doxorubicin-Induced Chemobrain: Impact on Neuroinflammation, Oxidative Stress, and Brain Mitochondrial and Synaptic Alterations. Neurochem Res 46, 149–158 (2021). https://doi.org/10.1007/s11064-020-03164-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03164-2

Keywords

Navigation