Skip to main content
Log in

Early Blood Biomarkers Distinguish Inflammation from Neonatal Hypoxic-Ischemia Encephalopathy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neonatal hypoxic–ischemic encephalopathy is the most common cause of neurological disability in infancy. Superimposed inflammation may further worsen neurological outcomes. Reliable biomarkers which are both sensitive to hypoxic-ischemia and inflammation are critically needed. We tested plasma osteopontin (OPN) and glial fibrillary astrocytic protein (GFAP) within the reported therapeutic window (90 min after hypoxic-ischemic (HI) injury) in neonatal rats with different HI severity and inflammation. Two different HI severity groups (mild-HI with 75 min hypoxia and severe-HI with 150 min hypoxia) were established. Inflammation-sensitized HI brain injury induced by lipopolysaccharide (LPS) further increased apoptotic neurons and infarct volumes. In HI alone groups, OPN was significantly decreased (p < 0.001) but GFAP was slightly increased (p < 0.05) at 90 min after HI either in mild-HI or severe-HI compared with naïve group. In LPS-sensitized HI groups, both OPN and GFAP were significantly increased either in LPS-mild-HI or LPS-severe-HI groups compared with the naïve group (all p < 0.05). Induced inflammation by LPS exaggerated neonatal HI brain injury. The plasma OPN and GFAP levels may be useful to differentiate HI alone groups from inflammation-sensitized HI groups or naïve group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material (Data Transparency)

All data and materials support the published claims and comply with field standards.

Code Availability (Software Application or Custom Code)

The software application or custom code support their published claims and comply with field standards.

References

  1. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, Fanaroff AA, Poole WK, Wright LL, Higgins RD, Finer NN, Carlo WA, Duara S, Oh W, Cotton CM, Stevenson DK, Stoll BJ, Lemons JA, Guillet R, Jobe AH; National Institute of Child Health and Human Development Neonatal Research Network (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med.353:1574–1584.https://doi.org/10.1056/NEJMcps050929

    Article  CAS  PubMed  Google Scholar 

  2. Douglas-Escobar M, Weiss MD (2015) Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr 169:397–403. https://doi.org/10.1001/jamapediatrics.2014.3269

    Article  PubMed  Google Scholar 

  3. Pin TW, Eldridge B, Galea MP (2009) A review of developmental outcomes of term infants with post-asphyxia neonatal encephalopathy. Eur J Paediatr Neurol 13:224–234. https://doi.org/10.1016/j.ejpn.2008.05.001

    Article  PubMed  Google Scholar 

  4. Shankaran S, Pappas A, McDonald SA, Vohr BR, Hintz SR, Yolton K, Gustafson KE, Leach TM, Green C, Bara R, Petrie Huitema CM, Ehrenkranz RA, Tyson JE, Das A, Hammond J, Peralta-Carcelen M, Evans PW, Heyne RJ, Wilson-Costello DE, Vaucher YE, Bauer CR, Dusick AM, Adams-Chapman I, Goldstein RF, Guillet R, Papile LA, Higgins RD, Eunice Kennedy Shriver NICHD Neonatal Research Network (2012) Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med 366:2085–2092. https://doi.org/10.1056/NEJMoa1112066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, Polin RA, Robertson CM, Thoresen M, Whitelaw A, Gunn AJ (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicenter randomised trial. Lancet 365:663–670. https://doi.org/10.1016/S0140-6736(05)17946-X

    Article  PubMed  Google Scholar 

  6. Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG (2003) Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003311.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hagberg H, Gressens P, Mallard C (2012) Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 71:444–457. https://doi.org/10.1002/ana.22620

    Article  PubMed  Google Scholar 

  8. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, Gressens P (2015) The role of inflammation in perinatal brain injury. Nat Rev Neurol 11:192–208. https://doi.org/10.1038/nrneurol.2015.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sävman K, Blennow M, Gustafson K, Tarkowski E, Hagberg H (1998) Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatr Res 43:746–751. https://doi.org/10.1203/00006450-199806000-00006

    Article  PubMed  Google Scholar 

  10. Bartha AI, Foster-Barber A, Miller SP, Vigneron DB, Glidden DV, Barkovich AJ, Ferriero DM (2004) Neonatal encephalopathy: association of cytokines with MR spectroscopy and outcome. Pediatr Res 56:960–966. https://doi.org/10.1203/01.PDR.0000144819.45689.BB

    Article  CAS  PubMed  Google Scholar 

  11. Mir IN, Johnson-Welch SF, Nelson DB, Brown LS, Rosenfeld CR, Chalak LF (2015) Placental pathology is associated with severity of neonatal encephalopathy and adverse developmental outcomes following hypothermia. Am J Obstet Gynecol 213:849.e1–849.e7. https://doi.org/10.1016/j.ajog.2015.09.072

    Article  Google Scholar 

  12. Parker SJ, Kuzniewicz M, Niki H, Wu YW (2018) Antenatal and intrapartum risk factors for hypoxic-ischemic encephalopathy in a US Birth Cohort. J Pediatr 203:163–169. https://doi.org/10.1016/j.jpeds.2018.08.028

    Article  PubMed  Google Scholar 

  13. Nagdyman N, Kömen W, Ko HK, Müller C, Obladen M (2001) Early biochemical indicators of hypoxic-ischemic encephalopathy after birth asphyxia. Pediatr Res 49:502–506. https://doi.org/10.1203/00006450-200104000-00011

    Article  CAS  PubMed  Google Scholar 

  14. Chalak LF, Sánchez PJ, Adams-Huet B, Laptook AR, Heyne RJ, Rosenfeld CR (2014) Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy. J Pediatr 164:468–474. https://doi.org/10.1016/j.jpeds.2013.10.067

    Article  CAS  PubMed  Google Scholar 

  15. Ennen CS, Huisman TA, Savage WJ, Northington FJ, Jennings JM, Everett AD, Graham EM (2011) Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling. Am J Obstet Gynecol 205:251.e1-07. https://doi.org/10.1016/j.ajog.2011.06.025

    Article  CAS  Google Scholar 

  16. Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J (2002) Osteopontin—a molecule for all seasons. QJM 95:3–13. https://doi.org/10.1093/qjmed/95.1.3

    Article  CAS  PubMed  Google Scholar 

  17. Song G, Cai QF, Mao YB, Ming YL, Bao SD, Ouyang GL (2008) Osteopontin promotes ovarian cancer progression and cell survival and increases HIF-1alpha expression through the PI3-K/Akt pathway. Cancer Sci 99:1901–1907. https://doi.org/10.1111/j.1349-7006.2008.00911.x

    Article  CAS  PubMed  Google Scholar 

  18. Castello LM, Raineri D, Salmi L, Clemente N, Vaschetto R, Quaglia M, Garzaro M, Gentilli S, Navalesi P, Cantaluppi V, Dianzani U, Aspesi A, Chiocchetti A (2017) Osteopontin at the crossroads of inflammation and tumor progression. Mediators Inflamm 2017:4049098. https://doi.org/10.1155/2017/4049098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murugaiyan G, Mittal A, Weiner HL (2008) Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4 + T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. J Immunol 181:7480–7488. https://doi.org/10.4049/jimmunol.181.11.7480

    Article  CAS  PubMed  Google Scholar 

  20. Vaschetto R, Nicola S, Olivieri C, Boggio E, Piccolella F, Mesturini R, Damnotti F, Colombo D, Navalesi P, Della Corte F, Dianzani U, Chiocchetti A (2008) Serum levels of osteopontin are increased in SIRS and sepsis. Intensive Care Med 34:2176–2184. https://doi.org/10.1007/s00134-008-1268-4

    Article  CAS  PubMed  Google Scholar 

  21. Ellison JA, Velier JJ, Spera P, Jonak ZL, Wang X, Barone FC, Feuerstein GZ (1998) Osteopontin and its integrin receptor alpha(v)beta3 are upregulated during formation of the glial scar after focal stroke. Stroke 29:1698–1706. https://doi.org/10.1161/01.str.29.8.1698

    Article  CAS  PubMed  Google Scholar 

  22. Chen W, Ma Q, Suzuki H, Hartman R, Tang J, Zhang JH (2011) Osteopontin reduced hypoxia-ischemia neonatal brain injury by suppression of apoptosis in a rat pup model. Stroke 42:764–799. https://doi.org/10.1161/STROKEAHA.110.599118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tu YF, Jiang ST, Chow YH, Huang CC, Ho CJ, Chou YP (2016) Insulin receptor substrate-1 activation mediated p53 downregulation protects against hypoxic-ischemia in the neonatal Brain. Mol Neurobiol 53:3658–3669. https://doi.org/10.1007/s12035-015-9300-5

    Article  CAS  PubMed  Google Scholar 

  24. Tu YF, Lu PJ, Huang CC, Ho CJ, Chou YP (2012) Moderate dietary restriction reduces p53-mediated neurovascular damage and microglia activation after hypoxic ischemia in neonatal brain. Stroke 43:491–498. https://doi.org/10.1161/STROKEAHA.111.629931

    Article  CAS  PubMed  Google Scholar 

  25. McGill JK, Gallagher L, Carswell HV, Irving EA, Dominiczak AF, Macrae IM (2005) Impaired functional recovery after stroke in the stroke-prone spontaneously hypertensive rat. Stroke 36:135–141. https://doi.org/10.1161/01.STR.0000149629.32525.b7

    Article  CAS  PubMed  Google Scholar 

  26. Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ (2015) Therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy - Where to from here? Front Neurol 6:98. https://doi.org/10.3389/fneur.2015.00198

    Article  Google Scholar 

  27. Fleiss B, Tann CJ, Degos V, Sigaut S, Van Steenwinckel J, Schang AL, Kichev A, Robertson NJ, Mallard C, Hagberg H, Gressens P (2015) Inflammation-induced sensitization of the brain in term infants. Dev Med Child Neurol 57(Suppl 3):17–28. https://doi.org/10.1111/dmcn.12723

    Article  PubMed  Google Scholar 

  28. Mallard C, Tremblay ME, Vexler ZS (2019) Microglia and neonatal brain injury. Neuroscience 405:68–76. https://doi.org/10.1016/j.neuroscience.2018.01.023

    Article  CAS  PubMed  Google Scholar 

  29. Osredkar D, Thoresen M, Maes E, Flatebø T, Elstad M, Sabir H (2014) Hypothermia is not neuroprotective after infection-sensitized neonatal hypoxic-ischemic brain injury. Resuscitation 85:567–572. https://doi.org/10.1016/j.resuscitation.2013.12.006

    Article  PubMed  Google Scholar 

  30. Wintermark P, Boyd T, Gregas MC, Labrecque M, Hansen A (2010) Placental pathology in asphyxiated newborns meeting the criteria for therapeutic hypothermia. Am J Obstet Gynecol 203:597.e1–597.e9. https://doi.org/10.1016/j.ajog.2010.08.024

    Article  Google Scholar 

  31. Rebecca A, Howman AK, Charles A, Jacques, Dorota A, Doherty K, Simmer T, Strunk, Peter C, Richmond, Catherine H, Cole DP, Burgner (2012) Inflammatory and haematological markers in the maternal, umbilical cord and infant circulation in histological chorioamnionitis. PLoS ONE 7:e51836. https://doi.org/10.1371/journal.pone.0051836

    Article  CAS  Google Scholar 

  32. Eng LF, Ghirnikar RS (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451. https://doi.org/10.1023/a:1007677003387

    Article  CAS  PubMed  Google Scholar 

  33. Mir IN, Chalak LF (2014) Serum biomarkers to evaluate the integrity of the neurovascular unit. Early Hum Dev 90:707–711. https://doi.org/10.1016/j.earlhumdev.2014.06.010

    Article  CAS  PubMed  Google Scholar 

  34. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647. https://doi.org/10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Y, Dammer EB, Zhang-Brotzge X, Chen S, Duong DM, Seyfried NT, Kuan CY, Sun YY (2017) Osteopontin is a blood biomarker for microglial activation and brain injury in experimental hypoxic-ischemic encephalopathy. eNeuro. https://doi.org/10.1523/ENEURO.0253-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  36. van Velthoven CT, Heijnen CJ, van Bel F, Kavelaars A (2011) Osteopontin enhances endogenous repair after neonatal hypoxic-ischemic brain injury. Stroke 42:2294–2301. https://doi.org/10.1161/STROKEAHA.110.608315

    Article  CAS  PubMed  Google Scholar 

  37. Meller R, Stevens SL, Minami M, Cameron JA, King S, Rosenzweig H, Kristian D, Lessov NS, Simon RP, Stenzel-Poore MP (2005) Neuroprotection by osteopontin in stroke. J Cereb Blood Flow Metab 25:217–225. https://doi.org/10.1038/sj.jcbfm.9600022

    Article  CAS  PubMed  Google Scholar 

  38. Hirayama Y, Koizumi S (2018) Astrocytes and ischemic tolerance. Neurosci Res 126:53–59. https://doi.org/10.1016/j.neures.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  39. Buscemi L, Price M, Bezzi P, Hirt L (2019) Spatio-temporal overview of neuroinflammation in an experimental mouse stroke model. Sci Rep 9:507. https://doi.org/10.1038/s41598-018-36598-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) Atp mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. https://doi.org/10.1038/nn1472

    Article  CAS  PubMed  Google Scholar 

  41. Verderio C, Matteoli M (2001) ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma. J Immunol 166:6383–6391. https://doi.org/10.4049/jimmunol.166.10.6383

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Chi-Wu Chiang for critical comments and discussion on the manuscript, Dr. Wen-Hao Yu for supervising surgical procedures, the staff in the laboratory of National Cheng Kung University and two summer students (Ming-Chien Tu, Ming-June Tu) for their efforts in laboratory works.

Funding

This study was supported by grants from National Cheng Kung University Hospital (NCKUH- 10506011, 10705019) and Ministry of Science and Technology (MOST-106-2314-B006-065, 106-2314-B-006-075, 107-2314-B-006-005, 108-2314-B-006 -027-MY2, 108-2314-B-006-002) of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Fang Tu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

Approval was obtained from the animal ethics committee of National Cheng Kung University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, PM., Lin, CH., Lee, HT. et al. Early Blood Biomarkers Distinguish Inflammation from Neonatal Hypoxic-Ischemia Encephalopathy. Neurochem Res 45, 2712–2722 (2020). https://doi.org/10.1007/s11064-020-03119-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03119-7

Keywords

Navigation