Skip to main content

Advertisement

Log in

Tropisetron But Not Granisetron Ameliorates Spatial Memory Impairment Induced by Chronic Cerebral Hypoperfusion

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Tropisetron and Granisetorn are 5-HT3 antagonists with antiemetic effects. Tropisetron also has a partial agonistic effect on alpha-7 nicotinic acetylcholine receptors (α7 nAChRs). On the other hand, chronic cerebral hypoperfusion (CCH) attenuates cerebral blood flow and impairs cognitive functions. The goal of this study was to investigate the effect of Tropisetron and Granisetron on CCH-induced spatial memory impairment in rats. Forty-eight male Wistar rats were used in this study. 2-VO surgery was done to induce CCH and Radial Eight Arm Maz apparatus was used to evaluate spatial memory (working and reference memory). Tropisetron was injected intraperitoneally at the doses of 1 and 5 mg/kg, and Granisetron was injected intraperitoneally at the dose of 3 mg/kg. Dorsal hippocampal (CA1) neurons count, Interleukin 6 (IL-6) serum level, and serotonin-reuptake transporter (SERT) gene expression were also evaluated. The results showed, CCH impaired working and reference memory, increased IL-6 serum level, and decreased CA1 neurons and SERT expression. Tropisetron at the dose of 5 mg/kg restored all the effects of CCH. However, Granisetron did not restore CCH-induced memory impairment. Furthermore, Granisetron had no effect on IL-6. While, it increased SERT expression and CA1 neurons. In conclusion, Tropisetron but not Granisetron, ameliorated spatial memory impairment induced by CCH. We suggested conducting more detailed studies investigating the role of serotonergic system (5-HT3 receptors and serotonin transporters) and also α7 nAChRs in the effects of Tropisetron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li W, Liu H, Jiang H, Wang C, Guo Y, Sun Y, Zhao X, Xiong X, Zhang X, Zhang K, Nie Z, Pu X (2017) (S)-oxiracetam is the active ingredient in oxiracetam that alleviates the cognitive impairment induced by chronic cerebral hypoperfusion in rats. Sci Rep 7(1):10052. https://doi.org/10.1038/s41598-017-10283-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kitamura A, Manso Y, Duncombe J, Searcy J, Koudelka J, Binnie M, Webster S, Lennen R, Jansen M, Marshall I, Ihara M, Kalaria RN, Horsburgh K (2017) Long-term cilostazol treatment reduces gliovascular damage and memory impairment in a mouse model of chronic cerebral hypoperfusion. Sci Rep 7(1):4299. https://doi.org/10.1038/s41598-017-04082-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Farkas E, Institoris A, Domoki F, Mihaly A, Luiten PG, Bari F (2004) Diazoxide and dimethyl sulphoxide prevent cerebral hypoperfusion-related learning dysfunction and brain damage after carotid artery occlusion. Brain Res 1008(2):252–260. https://doi.org/10.1016/j.brainres.2004.02.037

    Article  CAS  PubMed  Google Scholar 

  4. Anastacio JR, Netto CA, Castro CC, Sanches EF, Ferreira DC, Noschang C, Krolow R, Dalmaz C, Pagnussat A (2014) Resveratrol treatment has neuroprotective effects and prevents cognitive impairment after chronic cerebral hypoperfusion. Neurol Res 36(7):627–633. https://doi.org/10.1179/1743132813Y.0000000293

    Article  CAS  PubMed  Google Scholar 

  5. Chen C, Zheng Y, Wu T, Wu C, Cheng X (2017) Oral administration of grape seed polyphenol extract restores memory deficits in chronic cerebral hypoperfusion rats. Behav Pharmacol 28(2–3):207–213. https://doi.org/10.1097/FBP.0000000000000276

    Article  CAS  PubMed  Google Scholar 

  6. Johnson AC, Miller JE, Cipolla MJ (2019) Memory impairment in spontaneously hypertensive rats is associated with hippocampal hypoperfusion and hippocampal vascular dysfunction. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678X19848510

    Article  PubMed  Google Scholar 

  7. Farkas E, Luiten PG, Bari F (2007) Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 54(1):162–180. https://doi.org/10.1016/j.brainresrev.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  8. Bang J, Jeon WK, Lee IS, Han JS, Kim BY (2013) Biphasic functional regulation in hippocampus of rat with chronic cerebral hypoperfusion induced by permanent occlusion of bilateral common carotid artery. PLoS ONE 8(7):e70093. https://doi.org/10.1371/journal.pone.0070093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Farkas E, Donka G, de Vos RA, Mihaly A, Bari F, Luiten PG (2004) Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 108(1):57–64. https://doi.org/10.1007/s00401-004-0864-9

    Article  PubMed  Google Scholar 

  10. Haddad JJ (2004) Mitogen-activated protein kinases and the evolution of Alzheimer's: a revolutionary neurogenetic axis for therapeutic intervention? Prog Neurobiol 73(5):359–377. https://doi.org/10.1016/j.pneurobio.2004.06.002

    Article  CAS  PubMed  Google Scholar 

  11. Kim JH, Ko PW, Lee HW, Jeong JY, Lee MG, Kim JH, Lee WH, Yu R, Oh WJ, Suk K (2017) Astrocyte-derived lipocalin-2 mediates hippocampal damage and cognitive deficits in experimental models of vascular dementia. Glia 65(9):1471–1490. https://doi.org/10.1002/glia.23174

    Article  PubMed  Google Scholar 

  12. Baskys A, Cheng JX (2012) Pharmacological prevention and treatment of vascular dementia: approaches and perspectives. Exp Gerontol 47(11):887–891. https://doi.org/10.1016/j.exger.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  13. Khoshnam SE, Sarkaki A, Rashno M, Farbood Y (2018) Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of vanillic acid. Life Sci 211:126–132. https://doi.org/10.1016/j.lfs.2018.08.065

    Article  CAS  PubMed  Google Scholar 

  14. Stegemann A, Bohm M (2019) Tropisetron via alpha7 nicotinic acetylcholine receptor suppresses tumor necrosis factor-alpha-mediated cell responses of human keratinocytes. Exp Dermatol 28(3):276–282. https://doi.org/10.1111/exd.13883

    Article  CAS  PubMed  Google Scholar 

  15. Callahan PM, Bertrand D, Bertrand S, Plagenhoef MR, Terry AV Jr (2017) Tropisetron sensitizes alpha7 containing nicotinic receptors to low levels of acetylcholine in vitro and improves memory-related task performance in young and aged animals. Neuropharmacology 117:422–433. https://doi.org/10.1016/j.neuropharm.2017.02.025

    Article  CAS  PubMed  Google Scholar 

  16. Poddar I, Callahan PM, Hernandez CM, Yang X, Bartlett MG, Terry AV Jr (2018) Tropisetron enhances recognition memory in rats chronically treated with risperidone or quetiapine. Biochem Pharmacol 151:180–187. https://doi.org/10.1016/j.bcp.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, Zeng Z, Wu C, Liu H (2019) Tropisetron inhibits sepsis by repressing hyper-inflammation and regulating the cardiac action potential in rat models. Biomed Pharmacother 110:380–388. https://doi.org/10.1016/j.biopha.2018.11.142

    Article  CAS  PubMed  Google Scholar 

  18. Haub S, Ritze Y, Ladel I, Saum K, Hubert A, Spruss A, Trautwein C, Bischoff SC (2011) Serotonin receptor type 3 antagonists improve obesity-associated fatty liver disease in mice. J Pharmacol Exp Ther 339(3):790–798. https://doi.org/10.1124/jpet.111.181834

    Article  CAS  PubMed  Google Scholar 

  19. Aminzadeh A (2017) Protective effect of tropisetron on high glucose induced apoptosis and oxidative stress in PC12 cells: roles of JNK, P38 MAPKs, and mitochondria pathway. Metab Brain Dis 32(3):819–826. https://doi.org/10.1007/s11011-017-9976-5

    Article  CAS  PubMed  Google Scholar 

  20. Swartz MM, Linn DM, Linn CL (2013) Tropisetron as a neuroprotective agent against glutamate-induced excitotoxicity and mechanisms of action. Neuropharmacology 73:111–121. https://doi.org/10.1016/j.neuropharm.2013.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mansuy IM (2003) Calcineurin in memory and bidirectional plasticity. Biochem Biophys Res Commun 311(4):1195–1208

    Article  CAS  Google Scholar 

  22. Javadi-Paydar M, Zakeri M, Norouzi A, Rastegar H, Mirazi N, Dehpour AR (2012) Involvement of nitric oxide in granisetron improving effect on scopolamine-induced memory impairment in mice. Brain Res 1429:61–71. https://doi.org/10.1016/j.brainres.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  23. Spartinou A, Nyktari V, Papaioannou A (2017) Granisetron: a review of pharmacokinetics and clinical experience in chemotherapy induced - nausea and vomiting. Expert Opin Drug Metab Toxicol 13(12):1289–1297. https://doi.org/10.1080/17425255.2017.1396317

    Article  CAS  PubMed  Google Scholar 

  24. Chugh Y, Saha N, Sankaranarayanan A, Sharma PL (1991) Memory enhancing effects of granisetron (BRL 43694) in a passive avoidance task. Eur J Pharmacol 203(1):121–123

    Article  CAS  Google Scholar 

  25. Naghdi N, Harooni HE (2005) The effect of intrahippocampal injections of ritanserin (5HT2A/2C antagonist) and granisetron (5HT3 antagonist) on learning as assessed in the spatial version of the water maze. Behav Brain Res 157(2):205–210. https://doi.org/10.1016/j.bbr.2004.06.024

    Article  CAS  PubMed  Google Scholar 

  26. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press (US), Washington, DC. https://doi.org/10.17226/12910

    Book  Google Scholar 

  27. Candelario-Jalil E, Munoz E, Fiebich BL (2008) Detrimental effects of tropisetron on permanent ischemic stroke in the rat. BMC Neurosci 9:19. https://doi.org/10.1186/1471-2202-9-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mousavizadeh K, Rahimian R, Fakhfouri G, Aslani FS, Ghafourifar P (2009) Anti-inflammatory effects of 5-HT3 receptor antagonist, tropisetron on experimental colitis in rats. Eur J Clin Invest 39(5):375–383. https://doi.org/10.1111/j.1365-2362.2009.02102.x

    Article  CAS  PubMed  Google Scholar 

  29. Rahimian R, Daneshmand A, Mehr SE, Barzegar-Fallah A, Mohammadi-Rick S, Fakhfouri G, Shabanzadeh AP, Dehpour AR (2011) Tropisetron ameliorates ischemic brain injury in an embolic model of stroke. Brain Res 1392:101–109. https://doi.org/10.1016/j.brainres.2011.03.053

    Article  CAS  PubMed  Google Scholar 

  30. Tian XS, Guo XJ, Ruan Z, Lei Y, Chen YT, Zhang HY (2014) Long-term vision and non-vision dominant behavioral deficits in the 2-VO rats are accompanied by time and regional glial activation in the white matter. PLoS ONE 9(6):e101120. https://doi.org/10.1371/journal.pone.0101120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao H, Li Z, Wang Y, Zhang Q (2012) Hippocampal expression of synaptic structural proteins and phosphorylated cAMP response element-binding protein in a rat model of vascular dementia induced by chronic cerebral hypoperfusion. Neural Regen Res 7(11):821–826. https://doi.org/10.3969/j.issn.1673-5374.2012.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Malboosi N, Nasehi M, Hashemi M, Vaseghi S, Zarrindast MR (2020) The neuroprotective effect of NeuroAid on morphine-induced amnesia with respect to the expression of TFAM, PGC-1alpha, DeltafosB and CART genes in the hippocampus of male Wistar rats. Gene 742:144601. https://doi.org/10.1016/j.gene.2020.144601

    Article  CAS  PubMed  Google Scholar 

  33. Nasehi M, Torabinejad S, Hashemi M, Vaseghi S, Zarrindast MR (2019) Effect of cholestasis and NeuroAid treatment on the expression of Bax, Bcl-2, Pgc-1alpha and Tfam genes involved in apoptosis and mitochondrial biogenesis in the striatum of male rats. Metab Brain Dis. https://doi.org/10.1007/s11011-019-00508-y

    Article  PubMed  Google Scholar 

  34. Zeng Q, Huang Z, Zhang J, Liu R, Li X, Zeng J, Xiao H (2019) 3'-Daidzein sulfonate sodium protects against chronic cerebral hypoperfusion-mediated cognitive impairment and hippocampal damage via activity-regulated cytoskeleton-associated protein upregulation. Front Neurosci 13:104. https://doi.org/10.3389/fnins.2019.00104

    Article  PubMed  PubMed Central  Google Scholar 

  35. Damodaran T, Muller CP, Hassan Z (2019) Chronic cerebral hypoperfusion-induced memory impairment and hippocampal long-term potentiation deficits are improved by cholinergic stimulation in rats. Pharmacol Rep 71(3):443–448. https://doi.org/10.1016/j.pharep.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  36. Sekhon LH, Spence I, Morgan MK, Weber NC (1998) Role of inhibition in chronic cerebral hypoperfusion. J Clin Neurosci 5(4):423–428

    Article  CAS  Google Scholar 

  37. Liu Q, Radwanski R, Babadjouni R, Patel A, Hodis DM, Baumbacher P, Zhao Z, Zlokovic B, Mack WJ (2019) Experimental chronic cerebral hypoperfusion results in decreased pericyte coverage and increased blood-brain barrier permeability in the corpus callosum. J Cereb Blood Flow Metab 39(2):240–250. https://doi.org/10.1177/0271678X17743670

    Article  PubMed  Google Scholar 

  38. Li W, Yuan H, Yu Y, Cheong YK, Ren G, Yang Z (2017) Etidronate rescues cognitive deficits through improving synaptic transmission and suppressing apoptosis in 2-vessel occlusion model rats. J Neurochem 140(3):476–484. https://doi.org/10.1111/jnc.13904

    Article  CAS  PubMed  Google Scholar 

  39. Nie C, Nie H, Zhao Y, Wu J, Zhang X (2016) Betaine reverses the memory impairments in a chronic cerebral hypoperfusion rat model. Neurosci Lett 615:9–14. https://doi.org/10.1016/j.neulet.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  40. Meyer D, Bonhoeffer T, Scheuss V (2014) Balance and stability of synaptic structures during synaptic plasticity. Neuron 82(2):430–443. https://doi.org/10.1016/j.neuron.2014.02.031

    Article  CAS  PubMed  Google Scholar 

  41. Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399(6731):66–70. https://doi.org/10.1038/19978

    Article  CAS  PubMed  Google Scholar 

  42. Yao ZH, Yao XL, Zhang SF, Hu JC, Zhang Y (2019) Tripchlorolide may improve spatial cognition dysfunction and synaptic plasticity after chronic cerebral hypoperfusion. Neural Plast 2019:2158285. https://doi.org/10.1155/2019/2158285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li AJ, Katafuchi T, Oda S, Hori T, Oomura Y (1997) Interleukin-6 inhibits long-term potentiation in rat hippocampal slices. Brain Res 748(1–2):30–38

    Article  CAS  Google Scholar 

  44. Meneses A, Perez-Garcia G, Ponce-Lopez T, Tellez R, Castillo C (2011) Serotonin transporter and memory. Neuropharmacology 61(3):355–363. https://doi.org/10.1016/j.neuropharm.2011.01.018

    Article  CAS  PubMed  Google Scholar 

  45. Nirogi R, Kandikere V, Bhyrapuneni G, Saralaya R, Muddana N, Komarneni P (2012) Methyllycaconitine: a non-radiolabeled ligand for mapping alpha7 neuronal nicotinic acetylcholine receptors - in vivo target localization and biodistribution in rat brain. J Pharmacol Toxicol Methods 66(1):22–28. https://doi.org/10.1016/j.vascn.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  46. Huang M, Felix AR, Kwon S, Lowe D, Wallace T, Santarelli L, Meltzer HY (2014) The alpha-7 nicotinic receptor partial agonist/5-HT3 antagonist RG3487 enhances cortical and hippocampal dopamine and acetylcholine release. Psychopharmacology 231(10):2199–2210. https://doi.org/10.1007/s00213-013-3373-5

    Article  CAS  PubMed  Google Scholar 

  47. Bitner RS, Bunnelle WH, Decker MW, Drescher KU, Kohlhaas KL, Markosyan S, Marsh KC, Nikkel AL, Browman K, Radek R, Anderson DJ, Buccafusco J, Gopalakrishnan M (2010) In vivo pharmacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107: preclinical considerations in Alzheimer's disease. J Pharmacol Exp Ther 334(3):875–886. https://doi.org/10.1124/jpet.110.167213

    Article  CAS  PubMed  Google Scholar 

  48. Spilman P, Descamps O, Gorostiza O, Peters-Libeu C, Poksay KS, Matalis A, Campagna J, Patent A, Rao R, John V, Bredesen DE (2014) The multi-functional drug tropisetron binds APP and normalizes cognition in a murine Alzheimer's model. Brain Res 1551:25–44. https://doi.org/10.1016/j.brainres.2013.12.029

    Article  CAS  PubMed  Google Scholar 

  49. Hashimoto K, Fujita Y, Ishima T, Hagiwara H, Iyo M (2006) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of tropisetron: role of alpha7 nicotinic receptors. Eur J Pharmacol 553(1–3):191–195. https://doi.org/10.1016/j.ejphar.2006.09.055

    Article  CAS  PubMed  Google Scholar 

  50. Hashimoto K, Iyo M, Freedman R, Stevens KE (2005) Tropisetron improves deficient inhibitory auditory processing in DBA/2 mice: role of alpha 7 nicotinic acetylcholine receptors. Psychopharmacology 183(1):13–19. https://doi.org/10.1007/s00213-005-0142-0

    Article  CAS  PubMed  Google Scholar 

  51. Kawamata J, Shimohama S (2011) Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer's and Parkinson's diseases. J Alzheimers Dis 24(Suppl 2):95–109. https://doi.org/10.3233/JAD-2011-110173

    Article  CAS  PubMed  Google Scholar 

  52. Liu Y, Hu J, Wu J, Zhu C, Hui Y, Han Y, Huang Z, Ellsworth K, Fan W (2012) alpha7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation. J Neuroinflammation 9:98. https://doi.org/10.1186/1742-2094-9-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen P, Yuan Y, Zhang T, Xu B, Gao Q, Guan T (2018) Pentosan polysulfate ameliorates apoptosis and inflammation by suppressing activation of the p38 MAPK pathway in high glucosetreated HK2 cells. Int J Mol Med 41(2):908–914. https://doi.org/10.3892/ijmm.2017.3290

    Article  CAS  PubMed  Google Scholar 

  54. Yu Y, Zhu W, Liang Q, Liu J, Yang X, Sun G (2018) Tropisetron attenuates lipopolysaccharide induced neuroinflammation by inhibiting NF-kappaB and SP/NK1R signaling pathway. J Neuroimmunol 320:80–86. https://doi.org/10.1016/j.jneuroim.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  55. Buhot MC, Malleret G, Segu L (1999) Serotonin receptors and cognitive behaviour: an update. IDrugs 2(5):426–437

    CAS  PubMed  Google Scholar 

  56. Meneses A (1999) 5-HT system and cognition. Neurosci Biobehav Rev 23(8):1111–1125

    Article  CAS  Google Scholar 

  57. Lankiewicz S, Lobitz N, Wetzel CH, Rupprecht R, Gisselmann G, Hatt H (1998) Molecular cloning, functional expression, and pharmacological characterization of 5-hydroxytryptamine3 receptor cDNA and its splice variants from guinea pig. Mol Pharmacol 53(2):202–212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Institute for Cognitive Science Studies (ICSS), Tehran, Iran, provided all animal samples and tools needed in this research.

Funding

There is no providing financial support to this project.

Author information

Authors and Affiliations

Authors

Contributions

AD and SA collected animal data. SV wrote the manuscript, analyzed data, and managed the literature search. MN and MRZ designed the study. All authors have approved the final manuscript.

Corresponding author

Correspondence to Mohammad Nasehi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divanbeigi, A., Nasehi, M., Vaseghi, S. et al. Tropisetron But Not Granisetron Ameliorates Spatial Memory Impairment Induced by Chronic Cerebral Hypoperfusion. Neurochem Res 45, 2631–2640 (2020). https://doi.org/10.1007/s11064-020-03110-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03110-2

Keywords

Navigation