Skip to main content

Advertisement

Log in

Sodium Butyrate Exacerbates Parkinson’s Disease by Aggravating Neuroinflammation and Colonic Inflammation in MPTP-Induced Mice Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The abnormal production of short chain fatty acid (SCFAs) caused by gut microbial dysbiosis plays an important role in the pathogenesis and progression of Parkinson’s disease (PD). This study sought to evaluate how butyrate, one of SCFAs, affect the pathology in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated mouse model of PD. Sodium butyrate (NaB; 165 mg/kg/day i.g., 7 days) was administrated from the day after the last MPTP injection. Interestingly, NaB significantly aggravated MPTP-induced motor dysfunction (P < 0.01), decreased dopamine (P < 0.05) and 5-HT (P < 0.05) levels, exacerbated declines of dopaminergic neurons (34%, P < 0.05) and downregulated expression of tyrosine hydroxylase (TH, 47%, P < 0.05), potentiated glia-mediated neuroinflammation by increasing the number of microglia (17%, P < 0.05) and activating astrocytes (28%, P < 0.01). In vitro study also confirmed that NaB could significantly exacerbate pro-inflammatory cytokines expression (IL-1β, 4.11-fold, P < 0.01; IL-18, 3.42-fold, P < 0.01 and iNOS, 2.52-fold, P < 0.05) and NO production (1.55-fold, P < 0.001) in LPS-stimulated BV2 cells. In addition, NaB upregulated the expression of pro-inflammatory cytokines (IL-6, 3.52-fold, P < 0.05; IL-18, 1.72-fold, P < 0.001) and NLRP3 (3.11-fold, P < 0.001) in the colon of PD mice. However, NaB had no effect on NFκB, MyD88 and TNF-α expression in PD mice. Our results indicate that NaB exacerbates MPTP-induced PD by aggravating neuroinflammation and colonic inflammation independently of the NFκB/MyD88/TNF-α signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

5-HT:

5-Hydroxytryptamine

CNS:

Central nervous system

DA:

Dopamine

FMT:

Fecal microbiota transplantation

GFAP:

Glial fibrillary acidic protein

HPLC:

High-performance liquid chromatography

Iba-1:

Ionized calcium-binding adaptor molecule 1

IF:

Immunofluorescence

IL-1β:

Interleukin-1 beta

IL-6:

Interleukin-6

IL-18:

Interleukin-18

iNOS:

Inductible nitric oxide synthase

MPTP:

1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine

NaB:

Sodium butyrate

NFκB:

Nuclear factor kappa B

NLRP3:

Nucleotide-binding oligomerization domain-like receptor protein 3

PBS:

Phosphate-buffered saline

PD:

Parkinson’s disease

qRT-PCR:

Quantitative real-time PCR

RRID:

Research resource identifier (see scicrunch.org)

SCFAs:

Short chain fatty acids

SN:

Substantia nigra pars compacta

TH:

Tyrosine hydroxylase

TNF-α:

Tumor necrosis factor alpha

References

  1. McNaught KSP, Olanow CW (2006) Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease. Neurobiol Aging 27:530–545

    CAS  PubMed  Google Scholar 

  2. Taylor JM, Main BS, Crack PJ (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson's disease. Neurochem Int 62:803–819

    CAS  PubMed  Google Scholar 

  3. Johnson ME, Stecher B, Labrie V, Brundin L, Brundin P (2019) Triggers, facilitators, and aggravators: redefining Parkinson's disease pathogenesis. Trends Neurosci 42:4–13

    CAS  PubMed  Google Scholar 

  4. Joers V, Tansey MG, Mulas G, Carta AR (2017) Microglial phenotypes in Parkinson's disease and animal models of the disease. Prog Neurobiol 155:57–75

    CAS  PubMed  Google Scholar 

  5. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783

    CAS  PubMed  Google Scholar 

  6. Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29:357–365

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S (2009) Infiltration of CD4(+) lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Investig 119:182–192

    CAS  PubMed  Google Scholar 

  8. Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, Onofrj M (2009) Peripheral cytokines profile in Parkinson's disease. Brain Behav Immunol 23:55–63

    CAS  Google Scholar 

  9. Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, Coron E, des Varannes SB, Naveilhan P, Nguyen JM, Neunlist M, Derkinderen P (2013) Colonic inflammation in Parkinson's disease. Neurobiol Dis 50:42–48

    CAS  PubMed  Google Scholar 

  10. Gil-Martinez AL, Estrada C, Cuenca L, Cano JA, Valiente M, Martinez-Caceres CM, Fernandez-Villalba E, Herrero MT (2019) Local gastrointestinal injury exacerbates inflammation and dopaminergic cell death in Parkinsonian mice. Neurotoxicol Res 35:918–930

    CAS  Google Scholar 

  11. Qian YW, Yang XD, Xu SQ, Wu CY, Song YY, Qin N, Chen SD, Xiao Q (2018) Alteration of the fecal microbiota in Chinese patients with Parkinson's disease. Brain Behav Immunol 70:194–202

    Google Scholar 

  12. Zhou ZL, Jia XB, Sun MF, Zhu YL, Qiao CM, Zhang BP, Zhao LP, Yang Q, Cui C, Chen X, Shen YQ (2019) Neuroprotection of fasting mimicking diet on MPTP-induced Parkinson's disease mice via gut microbiota and metabolites. Neurotherapeutics 16:741–760

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun MF, Zhu YL, Zhou ZL, Jia XB, Xu YD, Yang Q, Cui C, Shen YQ (2018) Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson's disease mice: gut microbiota, glial reaction and TLR4/TNF-alpha signaling pathway. Brain Behav Immun 70:48–60

    CAS  PubMed  Google Scholar 

  14. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermohlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167:1469–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O'Sullivan O, Clarke G, Stanton C, Dinan TG, Cryan JF (2018) Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol 596:4923–4944

    PubMed  PubMed Central  Google Scholar 

  17. Patnala R, Arumugam TV, Gupta N, Dheen ST (2017) HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke. Mol Neurobiol 54:6391–6411

    CAS  PubMed  Google Scholar 

  18. Rane P, Shields J, Heffernan M, Guo Y, Akbarian S, King JA (2012) The histone deacetylase inhibitor, sodium butyrate, alleviates cognitive deficits in pre-motor stage PD. Neuropharmacology 62:2409–2412

    CAS  PubMed  Google Scholar 

  19. Jin H, Kanthasamy A, Harischandra DS, Kondru N, Ghosh A, Panicker N, Anantharam V, Rana A, Kanthasamy AG (2014) Histone hyperacetylation up-regulates protein kinase Cδ in dopaminergic neurons to induce cell death: relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease. J Biol Chem 289:34743–34767

    PubMed  PubMed Central  Google Scholar 

  20. Xu YD, Cui C, Sun MF, Zhu YL, Chu M, Shi YW, Lin SL, Yang XS, Shen YQ (2017) Neuroprotective effects of loganin on MPTP-induced Parkinson's disease mice: neurochemistry, glial reaction and autophagy studies. J Cell Biochem 118:3495–3510

    CAS  PubMed  Google Scholar 

  21. Ogawa N, Hirose Y, Ohara S, Ono T, Watanabe Y (1985) A simple quantitative bradykinesia test in MPTP-treated mice. Res Commun Chem Pathol Pharmacol 50:435–441

    CAS  PubMed  Google Scholar 

  22. Chen WW, Zhang X, Huang WJ (2016) Role of neuroinflammation in neurodegenerative diseases. Mol Med Rep 13:3391–3396

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Camilleri M, Madsen K, Spiller R, Van Meerveld BG, Verne GN (2012) Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 24:503–512

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, Wang RX, Onyiah JC, Kominsky DJ, Colgan SP (2017) Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J Immunol 199:2976–2984

    CAS  PubMed  Google Scholar 

  25. Hu ED, Chen DZ, Wu JL, Lu FB, Chen L, Zheng MH, Li H, Huang Y, Li J, Jin XY, Gong YW, Lin Z, Wang XD, Xu LM, Chen YP (2018) High fiber dietary and sodium butyrate attenuate experimental autoimmune hepatitis through regulation of immune regulatory cells and intestinal barrier. Cell Immunol 328:24–32

    CAS  PubMed  Google Scholar 

  26. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Garcia-Hernandez V, Quiros M, Nusrat A (2017) Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci 1397:66–79

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor Perspect Biol 1:a001651

    Google Scholar 

  29. Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Burmann J, Fassbender K, Schwiertz A, Schafer KH (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat Disord 32:66–72

    PubMed  Google Scholar 

  30. Booth HDE, Hirst WD, Wade-Martins R (2017) The role of astrocyte dysfunction in Parkinson's disease pathogenesis. Trends Neurosci 40:358–370

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Depboylu C, Stricker S, Ghobril JP, Oertel WH, Priller J, Hoglinger GU (2012) Brain-resident microglia predominate over infiltrating myeloid cells in activation, phagocytosis and interaction with T-lymphocytes in the MPTP mouse model of Parkinson disease. Exp Neurol 238:183–191

    CAS  PubMed  Google Scholar 

  32. Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R (2011) Regulation of inflammation by short chain fatty acids. Nutrients 3:858–876

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, Korecka A, Bakocevic N, Ng LG, Kundu P, Gulyas B, Halldin C, Hultenby K, Nilsson H, Hebert H, Volpe BT, Diamond B, Pettersson S (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263

    Google Scholar 

  34. Antonelli F, Strafella AP (2014) Behavioral disorders in Parkinson's disease: the role of dopamine. Parkinsonism Relat Disord 20:S10–S12

    PubMed  Google Scholar 

  35. Chen LL, Xie JX (2018) Dopamine in Parkinson's disease: precise supplementation with motor planning. Neurosci Bull 34:873–874

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Polotis M, Niccolini F (2015) Serotonin in Parkinson's disease. Behav Brain Res 277:136–145

    Google Scholar 

  37. Tong Q, Zhang L, Yuan YS, Jiang SM, Zhang R, Xu QR, Ding J, Li DQ, Zhou XB, Zhang KZ (2015) Reduced plasma serotonin and 5-hydroxyindoleacetic acid levels in Parkinson's disease are associated with nonmotor symptoms. Parkinsonism Relat Disord 21:882–887

    PubMed  Google Scholar 

  38. Leonel AJ, Alvarez-Leite JI (2012) Butyrate: implications for intestinal function. Curr Opin Clin Nutr Metab Care 15:474–479

    CAS  PubMed  Google Scholar 

  39. Yamawaki Y, Yoshioka N, Nozaki K, Ito H, Oda K, Harada K, Shirawachi S, Asano S, Aizawa H, Yamawaki S, Kanematsu T, Akagi H (2018) Sodium butyrate abolishes lipopolysaccharide-induced depression-like behaviors and hippocampal microglial activation in mice. Brain Res 1680:13–38

    CAS  PubMed  Google Scholar 

  40. Liu JM, Wang FY, Liu SZ, Du JM, Hu XZ, Xiong JJ, Fang RC, Chen WQ, Sun J (2017) Sodium butyrate exerts protective effect against Parkinson's disease in mice via stimulation of glucagon like peptide-1. J Neurol Sci 381:176–181

    CAS  PubMed  Google Scholar 

  41. Lanza M, Campolo M, Casili G, Filippone A, Paterniti I, Cuzzocrea S, Esposito E (2019) Sodium butyrate exerts neuroprotective effects in spinal cord injury. Mol Neurobiol 56:3937–3947

    CAS  PubMed  Google Scholar 

  42. Jaworska J, Ziemka-Nalecz M, Sypecka J, Zalewska T (2017) The potential neuroprotective role of a histone deacetylase inhibitor, sodium butyrate, after neonatal hypoxia-ischemia. J Neuroinflamm 14:34

    Google Scholar 

  43. Saitoh T, Niijima K, Mizuno Y (1987) Long-term effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on striatal dopamine content in young and mature mice. J Neurol Sci 77:229–235

    CAS  PubMed  Google Scholar 

  44. Sanford JA, Zhang LJ, Williams MR, Gangoiti JA, Huang CM, Gallo RL (2016) Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci Immunol 1:4609

    Google Scholar 

  45. Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A (2004) Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 141:874–880

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin AQ, Zheng WX, He Y, Tang WL, Wei XB, He RN, Huang W, Su YY, Huang YW, Zhou HW, Xie HF (2018) Gut microbiota in patients with Parkinson's disease in southern China. Parkinsonism Relat Disord 53:82–88

    PubMed  Google Scholar 

  47. Matheoud D, Cannon T, Voisin A, Penttinen AM, Ramet L, Fahmy AM, Ducrot C, Laplante A, Bourque MJ, Zhu L, Cayrol R, Le Campion A, McBride HM, Gruenheid S, Trudeau LE, Desjardins M (2019) Intestinal infection triggers Parkinson's disease-like symptoms in Pink1(-/-) mice. Nature 571:565–569

    CAS  PubMed  Google Scholar 

  48. Wang QQ, Liu YJ, Zhou JW (2015) Neuroinflammation in Parkinson's disease and its potential as therapeutic target. Transl Neurodegener 4:19

    PubMed  PubMed Central  Google Scholar 

  49. Dodiya HB, Forsyth CB, Voigt RM, Engen PA, Patel J, Shaikh M, Green SJ, Naqib A, Roy A, Kordower JH, Pahan K, Shannon KM, Keshavarzian A (2020) Chronic stress-induced gut dysfunction exacerbates Parkinson's disease phenotype and pathology in a rotenone-induced mouse model of Parkinson's disease. Neurobiol Dis 135:104352

    CAS  PubMed  Google Scholar 

  50. Peng S, Wang CP, Ma JY, Jiang KT, Jiang YH, Gu XS, Sun C (2018) Achyranthes bidentata polypeptide protects dopaminergic neurons from apoptosis in Parkinson's disease models both in vitro and in vivo. Br J Pharmacol 175:631–643

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bove J, Martinez-Vicente M, Dehay B, Perier C, Recasens A, Bombrun A, Antonsson B, Vila M (2014) BAX channel activity mediates lysosomal disruption linked to Parkinson disease. Autophagy 10:889–900

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yan ZQ, Gibson SA, Buckley JA, Qin HW, Benveniste EN (2018) Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol 189:4–13

    CAS  PubMed  Google Scholar 

  53. Marchetti B (2018) Wnt/beta-catenin signaling pathway governs a full program for dopaminergic neuron survival, neurorescue and regeneration in the MPTP mouse model of Parkinson's Disease. Int J Mol Sci 19(12):3743

    PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Stanley Li Lin from Shantou University for carefully revising the manuscript.

Funding

National Natural Science Foundation of China, No. 81771384 and No. 81801276; Public Health Research Center at Jiangnan University, No. JUPH201801; Chinese postdoctoral science foundation, No. 2018M630512.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Qin Shen.

Ethics declarations

Conflict of interest

None of the authors declares any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, CM., Sun, MF., Jia, XB. et al. Sodium Butyrate Exacerbates Parkinson’s Disease by Aggravating Neuroinflammation and Colonic Inflammation in MPTP-Induced Mice Model. Neurochem Res 45, 2128–2142 (2020). https://doi.org/10.1007/s11064-020-03074-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03074-3

Keywords

Navigation