Skip to main content

Advertisement

Log in

High Estrogen Level Modifies Postoperative Hyperalgesia via GPR30 and MMP-9 in Dorsal Root Ganglia Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The cycling of sex hormones is one of the factors affecting pain in females, and the mechanisms are not fully understood. G-protein coupled estrogen receptor 30 (GPR30) is the estrogen receptor known to be involved in mechanical hyperalgesia. Studies have demonstrated that matrix metalloproteinase-9 (MMP-9) is a critical component in peripheral/central nervous system hypersensitivity and neuroinflammation, both of which participate in hyperalgesia. Here, ovariectomized rats were treated with low or high dose estrogen replacement, and then plantar incisions were made. Subsequently, mechanical allodynia was evaluated by determining the paw withdrawal mechanical threshold before and after the incision. In rats with incisions, high estrogen levels induced postoperative hyperalgesia and upregulation of GPR30 and MMP-9 in dorsal root ganglia (DRGs). MMP-9 was expressed primarily in DRG neurons co-expressing GPR30, and led to the activation of IL-1β. After intrathecal injection of the GPR30 agonist G1, female rats with low estrogen and plantar incisions continued to exhibit significant hyperalgesia until 48 h post-incision. In high estrogen level rats with plantar incisions, intrathecal injection of GPR30 antagonist G15 significantly attenuated postoperative hyperalgesia. Intraperitoneal injection of N-acetyl-cysteine, a source of cysteine that prevents the oxidation of cysteine residues on MMP-9, significantly relieved high estrogen-induced postoperative hyperalgesia via suppression of MMP-9 and IL-1β activation in DRGs. These results demonstrate that high estrogen level in rats with incisions elicit GPR30 and MMP-9 upregulation in DRGs and subsequently activate IL-1β, leading to induced postoperative hyperalgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Devall AJ, Lovick TA (2010) Differential activation of the periaqueductal gray by mild anxiogenic stress at different stages of the estrous cycle in female rats. Neuropsychopharmacology 35(5):1174–1185. https://doi.org/10.1038/npp.2009.222Epub 2010 Jan 13

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fillingim RB, Ness TJ (2000) Sex-related hormonal influences on pain and analgesic responses. Neurosci Biobehav Rev 24(4):485–501

    Article  CAS  PubMed  Google Scholar 

  3. Riley JL 3rd, Robinson ME, Wise EA, Price DD (1999) A meta-analytic review of pain perception across the menstrual cycle. Pain 81(3):225–235

    Article  PubMed  Google Scholar 

  4. Ji Y, Tang B, Traub RJ (2011) Spinal estrogen receptor alpha mediates estradiol-induced pronociception in a visceral pain model in the rat. Pain 152(5):1182–1191. https://doi.org/10.1016/j.pain.2011.01.046Epub 2011 Mar 9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bradshaw H, Miller J, Ling Q, Malsnee K, Ruda MA (2000) Sex differences and phases of the estrous cycle alter the response of spinal cord dynorphin neurons to peripheral inflammation and hyperalgesia. Pain 85(1–2):93–99

    Article  CAS  PubMed  Google Scholar 

  6. Mannino CA, South SM, Quinones-Jenab V, Inturrisi CE (2007) Estradiol replacement in ovariectomized rats is antihyperalgesic in the formalin test. J Pain 8(4):334–342 Epub 2006 Nov 29

    Article  CAS  PubMed  Google Scholar 

  7. Cao DY, Ji Y, Tang B, Traub RJ (2012) Estrogen receptor β activation is antinociceptive in a model of visceral pain in the rat. J Pain 13(7):685–694. https://doi.org/10.1016/j.jpain.2012.04.010Epub 2012 Jun 13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prossnitz ER, Barton M (2014) Estrogen biology: new insights into GPER function and clinical opportunities. Mol Cell Endocrinol 389(1–2):71–83. https://doi.org/10.1016/j.mce.2014.02.002Epub 2014 Feb 12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thomas P, Pang Y, Filardo EJ, Dong J (2005) Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146(2):624–632 Epub 2004 Nov 11

    Article  CAS  PubMed  Google Scholar 

  10. Vivacqua A, Bonofiglio D, Albanito L, Madeo A, Rago V, Carpino A, Musti AM, Picard D, Andò S, Maggiolini M (2006) 17beta-estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the g protein-coupled receptor GPR30. Mol Pharmacol 70(4):1414–1423 Epub 2006 Jul 11

    Article  CAS  PubMed  Google Scholar 

  11. Prossnitz ER, Maggiolini M (2009) Mechanisms of estrogen signaling and gene expression via GPR30. Mol Cell Endocrinol 308(1–2):32–38. https://doi.org/10.1016/j.mce.2009.03.026Epub 2009 Apr 15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dennis MK, Burai R, Ramesh C, Petrie WK, Alcon SN, Nayak TK, Bologa CG, Leitao A, Brailoiu E, Deliu E, Dun NJ, Sklar LA, Hathaway HJ, Arterburn JB, Oprea TI, Prossnitz ER (2009) In vivo effects of a GPR30 antagonist. Nat Chem Biol 5(6):421–427. https://doi.org/10.1038/nchembio.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liverman CS, Brown JW, Sandhir R, McCarson KE, Berman NE (2009) Role of the oestrogen receptors GPR30 and ERalpha in peripheral sensitization: relevance to trigeminal pain disorders in women. Cephalalgia 29(7):729–741. https://doi.org/10.1111/j.1468-2982.2008.01789.xEpub 2009 Feb 12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dun SL, Brailoiu GC, Gao X, Brailoiu E, Arterburn JB, Prossnitz ER, Oprea TI, Dun NJ (2009) Expression of estrogen receptor GPR30 in the rat spinal cord and in autonomic and sensory ganglia. J Neurosci Res 87(7):1610–1619. https://doi.org/10.1002/jnr.21980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alvarez P, Bogen O, Levine JD (2014) Role of nociceptor estrogen receptor GPR30 in a rat model of endometriosis pain. Pain 155(12):2680–2686. https://doi.org/10.1016/j.pain.2014.09.035Epub 2014 Oct 2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ethell IM, Ethell DW (2007) Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res 85(13):2813–2823

    Article  CAS  PubMed  Google Scholar 

  17. Parks WC, Wilson CL, López-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4(8):617–629

    Article  CAS  PubMed  Google Scholar 

  18. Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR (2008) Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 14(3):331–336. https://doi.org/10.1038/nm1723Epub 2008 Feb 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li J, Xu L, Deng X, Jiang C, Pan C, Chen L, Han Y, Dai W, Hu L, Zhang G, Cheng Z, Liu W (2016) N-acetyl-cysteine attenuates neuropathic pain by suppressing matrix metalloproteinases. Pain 157(8):1711–1723. https://doi.org/10.1097/j.pain.0000000000000575

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Adwanikar H, Werb Z, Noble-Haeusslein LJ (2010) Matrix metalloproteinases and neurotrauma: evolving roles in injury and reparative processes. Neuroscientist 16(2):156–170. https://doi.org/10.1177/1073858409355830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang D, Hu L, Zhang G, Zhang L, Chen C (2010) G protein-coupled receptor 30 in tumor development. Endocrine 38(1):29–37. https://doi.org/10.1007/s12020-010-9363-zEpub 2010 Jul 8

    Article  CAS  PubMed  Google Scholar 

  22. Millea PJ (2009) N-acetylcysteine: multiple clinical applications. Am Fam Phys 80(3):265–269

    Google Scholar 

  23. Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87(14):5578–5582

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lam KK, Hu CT, Ou TY, Yen MH, Chen HI (2002) Effects of oestrogen replacement on steady and pulsatile haemodynamics in ovariectomized rats. Br J Pharmacol 136(6):811–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okamoto K, Thompson R, Katagiri A, Bereiter DA (2013) Estrogen status and psychophysical stress modify temporomandibular joint input to medullary dorsal horn neurons in a lamina-specific manner in female rats. Pain 154(7):1057–1064. https://doi.org/10.1016/j.pain.2013.03.009Epub 2013 Mar 15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chu LC, Tsaur ML, Lin CS, Hung YC, Wang TY, Chen CC, Cheng JK (2011) Chronic intrathecal infusion of gabapentin prevents nerve ligation-induced pain in rats. Br J Anaesth 106(5):699–705. https://doi.org/10.1093/bja/aer063Epub 2011 Mar 25

    Article  CAS  PubMed  Google Scholar 

  27. An G, Li W, Yan T, Li S (2014) Estrogen rapidly enhances incisional pain of ovariectomized rats primarily through the G protein-coupled estrogen receptor. Int J Mol Sci 15(6):10479–10491. https://doi.org/10.3390/ijms150610479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brennan TJ, Vandermeulen EP, Gebhart GF (1996) Characterization of a rat model of incisional pain. Pain 64(3):493–501

    Article  CAS  PubMed  Google Scholar 

  29. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  CAS  PubMed  Google Scholar 

  30. Hucho T, Levine JD (2007) Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55(3):365–376

    Article  CAS  PubMed  Google Scholar 

  31. Hucho TB, Dina OA, Kuhn J, Levine JD (2006) Estrogen controls PKCepsilon-dependent mechanical hyperalgesia through direct action on nociceptive neurons. Eur J Neurosci 24(2):527–534 Epub 2006 Jul 12

    Article  PubMed  Google Scholar 

  32. Evrard HC, Balthazart J (2004) Rapid regulation of pain by estrogens synthesized in spinal dorsal horn neurons. J Neurosci 24(33):7225–7229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuhn J, Dina OA, Goswami C, Suckow V, Levine JD, Hucho T (2008) GPR30 estrogen receptor agonists induce mechanical hyperalgesia in the rat. Eur J Neurosci 27(7):1700–1709. https://doi.org/10.1111/j.1460-9568.2008.06131.xEpub 2008 Mar 26

    Article  PubMed  Google Scholar 

  34. Prossnitz ER, Oprea TI, Sklar LA, Arterburn JB (2008) The ins and outs of GPR30: a transmembrane estrogen receptor. J Steroid Biochem Mol Biol 109(3–5):350–353. https://doi.org/10.1016/j.jsbmb.2008.03.006Epub 2008 Mar 6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spary EJ, Chapman SE, Sinfield JK, Maqbool A, Kaye J, Batten TF (2013) Novel G protein-coupled oestrogen receptor GPR30 shows changes in mRNA expression in the rat brain over the oestrous cycle. Neurosignals 21(1–2):14–27. https://doi.org/10.1159/000333296Epub 2012 Feb 23

    Article  CAS  PubMed  Google Scholar 

  36. Yang WR, Zhu FW, Zhang JJ, Wang Y, Zhang JH, Lu C, Wang XZ (2017) PI3K/Akt activated by GPR30 and Src regulates 17β-estradiol-induced cultured immature boar sertoli cells proliferation. Reprod Sci 24(1):57–66. https://doi.org/10.1177/1933719116649696Epub 2016 Sep 27

    Article  CAS  PubMed  Google Scholar 

  37. Roche S, Fumagalli S, Courtneidge SA (1995) Requirement for Src family protein tyrosine kinases in G2 for fibroblast cell division. Science 269(5230):1567–1569

    Article  CAS  PubMed  Google Scholar 

  38. Ku MJ, Kim JH, Lee J, Cho JY, Chun T, Lee SY (2015) Maclurin suppresses migration and invasion of human non-small-cell lung cancer cells via anti-oxidative activity and inhibition of the Src/FAK-ERK-β-catenin pathway. Mol Cell Biochem 402(1–2):243–252. https://doi.org/10.1007/s11010-015-2331-4Epub 2015 Jan 29

    Article  CAS  PubMed  Google Scholar 

  39. Yong VW (2005) Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 6(12):931–944

    Article  CAS  PubMed  Google Scholar 

  40. Jiang L, Pan CL, Wang CY, Liu BQ, Han Y, Hu L, Liu L, Yang Y, Qu JW, Liu WT (2017) Selective suppression of the JNK-MMP2/9 signal pathway by tetramethylpyrazine attenuates neuropathic pain in rats. J Neuroinflamm 14(1):174. https://doi.org/10.1186/s12974-017-0947-x

    Article  CAS  Google Scholar 

  41. Chattopadhyay S, Myers RR, Janes J, Shubayev V (2007) Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve. Brain Behav Immun 21(5):561–568 Epub 2006 Dec 26

    Article  CAS  PubMed  Google Scholar 

  42. Kobayashi H, Chattopadhyay S, Kato K, Dolkas J, Kikuchi S, Myers RR, Shubayev VI (2008) MMPs initiate Schwann cell-mediated MBP degradation and mechanical nociception after nerve damage. Mol Cell Neurosci 39(4):619–627. https://doi.org/10.1016/j.mcn.2008.08.008Epub 2008 Sep 5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huntley GW (2012) Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci 13(11):743–757. https://doi.org/10.1038/nrn3320Epub 2012 Oct 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hazuda DJ, Strickler J, Kueppers F, Simon PL, Young PR (1990) Processing of precursor interleukin 1 beta and inflammatory disease. J Biol Chem 265(11):6318–6322

    CAS  PubMed  Google Scholar 

  45. Liu WT, Han Y, Liu YP, Song AA, Barnes B, Song XJ (2010) metalloproteinase-9 contributes to physical dependence on morphine in mice. J Neurosci 30(22):7613–7623. https://doi.org/10.1523/JNEUROSCI.1358-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takeda M, Tanimoto T, Kadoi J, Nasu M, Takahashi M, Kitagawa J, Matsumoto S (2007) Enhanced excitability of nociceptive trigeminal ganglion neurons by satellite glial cytokine following peripheral inflammation. Pain 129(1–2):155–166 Epub 2006 Nov 28

    Article  CAS  PubMed  Google Scholar 

  47. Binshtok AM, Wang H, Zimmermann K, Amaya F, Vardeh D, Shi L, Brenner GJ, Ji RR, Bean BP, Woolf CJ, Samad TA (2008) Nociceptors are interleukin-1beta sensors. J Neurosci 28(52):14062–14073. https://doi.org/10.1523/JNEUROSCI.3795-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takeda M, Kitagawa J, Takahashi M, Matsumoto S (2008) Activation of interleukin-1beta receptor suppresses the voltage-gated potassium currents in the small-diameter trigeminal ganglion neurons following peripheral inflammation. Pain 139(3):594–602. https://doi.org/10.1016/j.pain.2008.06.015Epub 2008 Aug 9

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China [Grand Nos. 81500955, 81771142, 81671087, 81870871, 81600958], Jiangsu Planned Projects for Postdoctoral Research Funds, China [Grand No. 1701022B], Nanjing Medical Science and Technique Development Foundation [Grand No. QRX17053, QRX17138].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Gu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Research Involving Human and Animal Rights

This article does not contain any studies with human participants. The experimental procedures were approved by the Use Committee in Nanjing University and Institutional Animal Care.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Liu, Y., Wu, H. et al. High Estrogen Level Modifies Postoperative Hyperalgesia via GPR30 and MMP-9 in Dorsal Root Ganglia Neurons. Neurochem Res 45, 1661–1673 (2020). https://doi.org/10.1007/s11064-020-03032-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03032-z

Keywords

Navigation