Skip to main content

Neuroprotective Effects of Deuterium-Depleted Water (DDW) Against H2O2-Induced Oxidative Stress in Differentiated PC12 Cells Through the PI3K/Akt Signaling Pathway


Oxidative stress plays an important role in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Induction of endogenous antioxidants to act against oxidative stress-mediated neuronal damage seems to be a reasonable strategy for delaying the progression of such diseases. In this study, we investigated the neuroprotective effect of deuterium-depleted water (DDW) against H2O2-induced oxidative stress in differentiated PC12 cells and the possible signaling pathways involved. The differentiated PC12 cell line was pretreated with DDW containing different concentrations (50–100 ppm) of deuterium and then treated with H2O2 to induce oxidative stress and neurotoxicity. We assessed cell survival, reactive oxygen species (ROS) generation, TUNEL assay, catalase (CAT), copper and zinc-containing superoxide dismutase (CuZn-SOD) and superoxide dismutase (SOD) activity and performed Western blot analysis to investigate the neuroprotective effect of DDW. The results indicated that DDW could attenuate H2O2-induced apoptosis, reduce ROS formation, and increase CAT, CuZn-SOD and SOD activity in H2O2-treated PC12 cells. Western blot analysis revealed that DDW treatment significantly increased the expression of p-Akt, Bcl-2 and GSK-3β. However, the protective effect of DDW on cell survival and the DDW-mediated increases in p-Akt, Bcl-2 and GSK-3β were abolished by pretreatment with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002. In summary, DDW may protect differentiated PC12 cells against H2O2-induced oxidative stress through the PI3K/Akt signaling pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Avila DS, Somlyai G, Somlyai I, Aschner M (2012) Anti-aging effects of deuterium depletion on Mn-induced toxicity in a C elegans model. Toxicol Lett 211:319–324.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205.

    CAS  Article  PubMed  Google Scholar 

  3. Brooks SC (1937) Osmotic effects of deuterium oxde (heave water) on living cells. Science 86:497–498.

    CAS  Article  PubMed  Google Scholar 

  4. Cong FS, Zhang YR, Sheng HC, Ao ZH, Zhang SY, Wang JY (2010) Deuterium-depleted water inhibits human lung carcinoma cell growth by apoptosis. Exp Ther Med 1:277–283.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Czajka DM, Finkel AJ, Fischer CS, Katz JJ (1961) Physiological effects of deuterium on dogs. Am J Physiol-Leg Content 201:357–362.

    Article  Google Scholar 

  6. Friedman I, Smith GI (1972) Deuterium content of snow as an index to winter climate in the sierra nevada area. Science 176:790–793.

    CAS  Article  PubMed  Google Scholar 

  7. Gao Y, Dong C, Yin J, Shen J, Tian J, Li C (2012) Neuroprotective effect of fucoidan on H2O2-induced apoptosis in PC12 cells via activation of PI3K/Akt pathway. Cell Mol Neurobiol 32:523–529.

    CAS  Article  PubMed  Google Scholar 

  8. Golpich M et al (2015) Glycogen synthase kinase-3 beta (GSK-3β) signaling: implications for Parkinson's disease. Pharmacol Res 97:16–26.

    CAS  Article  PubMed  Google Scholar 

  9. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Hildeman DA, Mitchell T, Aronow B, Wojciechowski S, Kappler J, Marrack P (2003) Control of Bcl-2 expression by reactive oxygen species. Proc Natl Acad Sci 100:15035–15040.

    CAS  Article  PubMed  Google Scholar 

  11. Hui L, Pei DS, Zhang QG, Guan QH, Zhang GY (2005) The neuroprotection of insulin on ischemic brain injury in rat hippocampus through negative regulation of JNK signaling pathway by PI3K/Akt activation. Brain Res 1052:1–9.

    CAS  Article  PubMed  Google Scholar 

  12. Ighodaro OM, Akinloye OA (2017) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med.

    Article  Google Scholar 

  13. Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Investig 111:163–169.

    CAS  Article  PubMed  Google Scholar 

  14. Kajiyama S et al (2008) Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res 28:137–143.

    CAS  Article  PubMed  Google Scholar 

  15. Krasnopolsky VA, Mumma MJ, Gladstone GR (1998) Detection of atomic deuterium in the upper atmosphere of Mars. Science 280:1576–1580

    CAS  Article  Google Scholar 

  16. Kubic JD, Mascarenhas JB, Iizuka T, Wolfgeher D, Lang D (2012) GSK-3 promotes cell survival, growth, and PAX3 levels in human melanoma cells. Mol Cancer Res.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787.

    CAS  Article  Google Scholar 

  18. Mattson MP, Zhang Y, Bose S (1993) Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Exp Neurol 121:1–13.

    CAS  Article  PubMed  Google Scholar 

  19. Park DS, Farinelli SE, Greene LA (1996) Inhibitors of cyclin-dependent kinases promote survival of post-mitotic neuronally differentiated PC12 cells and sympathetic neurons. J Biol Chem 271:8161–8169.

    Article  PubMed  Google Scholar 

  20. Peter GK (2009) GSK-3: A key player in neurodegeneration and memory. IUBMB Life 61:516–521.

    CAS  Article  Google Scholar 

  21. Rickle A, Bogdanovic N, Volkman I, Winblad B, Ravid R, Cowburn RF (2004) Akt activity in Alzheimer's disease and other neurodegenerative disorders. NeuroReport 15:955–959

    CAS  Article  Google Scholar 

  22. Seiji K, Kazuyoshi S, Fumio M, Zenji M, Toshio M, Kunio T (1999) Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J Neurosci Res 57:280–289

    Article  Google Scholar 

  23. Syroeshkin A, Pleteneva T, Uspenskaya E, Zlatskiy I, Antipova N, Grebennikova T, Levitskaya O (2018) D/H control of chemical kinetics in water solutions under low deuterium concentrations. Chem Eng J.

    Article  Google Scholar 

  24. Syroeshkin AV, Antipova NV, Zlatska AV, Zlatskiy IA, Skylska MD, Grebennikova TV, Goncharuk VV (2018) The effect of the deuterium depleted water on the biological activity of the eukaryotic cells. J Trace Elem Med Biol 50:629–633.

    CAS  Article  PubMed  Google Scholar 

  25. Tanaka A, Hamada N, Fujita Y, Itoh T, Nozawa Y, Iinuma M, Ito M (2010) A novel kavalactone derivative protects against H2O2-induced PC12 cell death via Nrf2/ARE activation. Bioorg Med Chem 18:3133–3139.

    CAS  Article  PubMed  Google Scholar 

  26. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat Rev Cancer 2:489.

    CAS  Article  PubMed  Google Scholar 

  27. Wang H et al (2013) Deuterium-depleted water (DDW) inhibits the proliferation and migration of nasopharyngeal carcinoma cells in vitro. Biomed Pharmacother 67:489–496.

    CAS  Article  PubMed  Google Scholar 

  28. Zlatskiy IA, Zlatska AV, Antipova NV, Syroeshkin AV (2018) Effect of deuterium on the morpho-functional characteristics of normal and cancer cells in vitro. Trace Elem Electrolytes 35:211–214.

    CAS  Article  Google Scholar 

Download references


This work was supported by the Scientific Research Fund of Guangdong Medical University (No. 2018007) to Dr. Hui Fu, the Construct TCM Research Program of Guangdong (No. 20162080) to Dongyun Qin, the "Group-type" Special Support Project for Education Talents in Universities (Nos. G619080438 and 4SG19045G).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hui Fu.

Ethics declarations

Conflicts of interest

All authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Qin, D., Yang, H. et al. Neuroprotective Effects of Deuterium-Depleted Water (DDW) Against H2O2-Induced Oxidative Stress in Differentiated PC12 Cells Through the PI3K/Akt Signaling Pathway. Neurochem Res 45, 1034–1044 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Deuterium-depleted water (DDW)
  • PC12 cells
  • Neuroprotective effect
  • Oxidative stress