Skip to main content

Advertisement

Log in

Elastin-Derived Peptide VGVAPG Affects Production and Secretion of Testosterone in Mouse Astrocyte In Vitro

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes play many distinct roles in the nervous system providing structural support for neurons and maintaining blood-brain barrier integrity. Steroid hormones exhibit a broad spectrum of actions in the central and peripheral nervous system, acting as trophic factors affecting cell differentiation and synaptic plasticity. In steroidogenesis, astrocytes play a key role by producing cholesterol, progesterone (P4), testosterone (T), and estradiol (E2). Currently there are only few studies which show that the Gly-Val-Ala-Pro-Gly (VGVAPG) peptide may affect the metabolism of astrocytes. Therefore, due to the role of neurosteroids, it is necessary to determine whether VGVAPG affects the level of E2, P4, and T in astrocytes. Primary mouse astrocytes were maintained in DMEM/F12 without phenol red, and supplemented with 10% charcoal/dextran-treated fetal bovine serum. Cells were exposed to 10 nM and 1 µM VGVAPG peptide and co-treated with cSrc kinase inhibitor I. After cell stimulation, we measured the Ki67 protein level and the production and secretion of P4, T, and E2. Our report presents the novel finding that the VGVAPG peptide affects the production and secretion of neurosteroids in astrocytes in vitro. The VGVAPG peptide increases the production of P4; however, at the same time, it decreases the secretion of P4 by astrocytes. On the other hand, it stimulates the production and secretion of T. Interestingly, the production of E2 did not change in any studied time interval. The expression of Ki67 protein increased after 48 h of exposition to the VGVAPG peptide. The cSrc kinase inhibitor I prevented most of the effects of VGVAPG peptide. Therefore, we postulate that T and cSrc kinase may be responsible for increasing astrocyte proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulfoxide

EBPs:

Elastin-binding protein

EDPs:

Elastin-derived peptides

FBS:

Fetal bovine serum

VGVAPG–Gly:

Val-Ala-Pro-Gly

BBB:

Blood–brain barrier

E2 :

Estradiol

T:

Testosterone

P4 :

Progesterone

References

  1. Verkhratsky A, Nedergaard M, Hertz L (2014) Why are astrocytes important? Neurochem Res.https://doi.org/10.1007/s11064-014-1403-2

    Article  PubMed  Google Scholar 

  2. Stoffel-Wagner B (2001) Neurosteroid metabolism in the human brain. Eur J Endocrinol 145:669–679. https://doi.org/10.1530/eje.0.1450669

    Article  CAS  PubMed  Google Scholar 

  3. Micevych PE, Chaban V, Ogi J et al (2007) Estradiol stimulates progesterone synthesis in hypothalamic astrocyte cultures. Endocrinology 148:782–789. https://doi.org/10.1210/en.2006-0774

    Article  CAS  PubMed  Google Scholar 

  4. Zwain IH, Yen SS (1999) Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology 140:3843–3852. https://doi.org/10.1210/endo.140.8.6907

    Article  CAS  PubMed  Google Scholar 

  5. Diotel N, Charlier TD, Lefebvre d’Hellencourt C et al (2018) Steroid transport, local synthesis, and signaling within the brain: roles in neurogenesis, neuroprotection, and sexual behaviors. Front Neurosci 12:1–27. https://doi.org/10.3389/fnins.2018.00084

    Article  Google Scholar 

  6. Zwain IH, Yen SS, Cheng CY (1997) Astrocytes cultured in vitro produce estradiol-17beta and express aromatase cytochrome P-450 (P-450 AROM) mRNA. Biochim Biophys Acta 1334:338–348

    Article  CAS  Google Scholar 

  7. Ferris HA, Perry RJ, Moreira GV et al (2017) Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proc Natl Acad Sci 114:1189–1194. https://doi.org/10.1073/pnas.1620506114

    Article  CAS  PubMed  Google Scholar 

  8. Baeten KM, Akassoglou K (2011) Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol 71:1018–1039. https://doi.org/10.1002/dneu.20954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fukuda S, Fini CA, Mabuchi T et al (2004) Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 35:998–1004. https://doi.org/10.1161/01.STR.0000119383.76447.05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamagata K, Tagami M, Takenaga F et al (2004) Hypoxia-induced changes in tight junction permeability of brain capillary endothelial cells are associated with IL-1beta and nitric oxide. Neurobiol Dis 17:491–499. https://doi.org/10.1016/j.nbd.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  11. Agrawal S, Anderson P, Durbeej M et al (2006) Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 203:1007–1019. https://doi.org/10.1084/jem.20051342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baumann E, Preston E, Slinn J, Stanimirovic D (2009) Post-ischemic hypothermia attenuates loss of the vascular basement membrane proteins, agrin and SPARC, and the blood-brain barrier disruption after global cerebral ischemia. Brain Res 1269:185–197. https://doi.org/10.1016/j.brainres.2009.02.062

    Article  CAS  PubMed  Google Scholar 

  13. Cardoso FL, Brites D, Brito MA (2010) Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev 64:328–363. https://doi.org/10.1016/j.brainresrev.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  14. Gutierrez J, Honig L, Elkind MSV et al (2016) Brain arterial aging and its relationship to Alzheimer dementia. Neurology 86:1507–1515. https://doi.org/10.1212/WNL.0000000000002590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Senior RM, Griffin GL, Mecham RP et al (1984) Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J Cell Biol 99:870–874. https://doi.org/10.1083/jcb.99.3.870

    Article  CAS  PubMed  Google Scholar 

  16. Gminski J, Mykala-Ciesla J, Machalski M, Drozdz M (1993) Elastin metabolism parameters in sera of patients with lung cancer. Neoplasma 40:41–44

    CAS  PubMed  Google Scholar 

  17. Blood CH, Sasse J, Brodt P, Zetter BR (1988) Identification of a tumor cell receptor for VGVAPG, an elastin-derived chemotactic peptide. J Cell Biol 107:1987–1993. https://doi.org/10.1083/jcb.107.5.1987

    Article  CAS  PubMed  Google Scholar 

  18. Pocza P, Süli-Vargha H, Darvas Z, Falus A (2008) Locally generated VGVAPG and VAPG elastin-derived peptides amplify melanoma invasion via the galectin-3 receptor. Int J Cancer 122:1972–1980. https://doi.org/10.1002/ijc.23296

    Article  CAS  PubMed  Google Scholar 

  19. Rodgers UR, Weiss AS (2004) Integrin αvβ3 binds a unique non-RGD site near the C-terminus of human tropoelastin. Biochimie 86:173–178. https://doi.org/10.1016/j.biochi.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  20. Lee P, Bax DV, Bilek MMM, Weiss AS (2014) A novel cell adhesion region in tropoelastin mediates attachment to integrin αvβ5. J Biol Chem 289:1467–1477. https://doi.org/10.1074/jbc.M113.518381

    Article  CAS  PubMed  Google Scholar 

  21. Mochizuki S, Brassart B, Hinek A (2002) Signaling pathways transduced through the elastin receptor facilitate proliferation of arterial smooth muscle cells. J Biol Chem 277:44854–44863. https://doi.org/10.1074/jbc.M205630200

    Article  CAS  PubMed  Google Scholar 

  22. Le Page A, Khalil A, Vermette P et al (2019) The role of elastin-derived peptides in human physiology and diseases. Matrix Biol. https://doi.org/10.1016/j.matbio.2019.07.004

    Article  PubMed  Google Scholar 

  23. Szychowski KA, Gmiński J (2019) Impact of elastin-derived VGVAPG peptide on bidirectional interaction between peroxisome proliferator-activated receptor gamma (Pparγ) and beta-galactosidase (β-Gal) expression in mouse cortical astrocytes in vitro. Naunyn Schmiedebergs Arch Pharmacol 392:405–413. https://doi.org/10.1007/s00210-018-1591-4

    Article  CAS  PubMed  Google Scholar 

  24. Szychowski KA, Gmiński J (2019) The VGVAPG peptide regulates the production of nitric oxide synthases and reactive oxygen species in mouse astrocyte cells in vitro. Neurochem Res 44:1127–1137. https://doi.org/10.1007/s11064-019-02746-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szychowski KA, Rombel-Bryzek A, Dołhańczuk-Śródka A, Gmiński J (2019) Antiproliferative effect of elastin-derived peptide VGVAPG on SH-SY5Y neuroblastoma cells. Neurotox Res 36:503–514. https://doi.org/10.1007/s12640-019-00040-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Szychowski KA, Wójtowicz AK, Gmiński J (2019) Impact of elastin-derived peptide VGVAPG on matrix metalloprotease-2 and – 9 and the tissue inhibitor of metalloproteinase-1, -2, -3 and – 4 mRNA expression in mouse cortical glial cells in vitro. Neurotox Res 35:100–110. https://doi.org/10.1007/s12640-018-9935-x

    Article  CAS  PubMed  Google Scholar 

  27. Garcia-Segura LM, Melcangi RC (2006) Steroids and glial cell function. Glia 54:485–498. https://doi.org/10.1002/glia.20404

    Article  PubMed  Google Scholar 

  28. Djebaili M, Guo Q, Pettus EH et al (2005) The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J Neurotrauma 22:106–118. https://doi.org/10.1089/neu.2005.22.106

    Article  PubMed  Google Scholar 

  29. Jones KJ, Kinderman NB, Oblinger MM (1997) Alterations in glial fibrillary acidic protein (GFAP) mRNA levels in the hamster facial motor nucleus: effects of axotomy and testosterone. Neurochem Res 22:1359–1366

    Article  CAS  Google Scholar 

  30. Jung-Testas I, Schumacher M, Bugnard H, Baulieu EE (1993) Stimulation of rat Schwann cell proliferation by estradiol: synergism between the estrogen and cAMP. Brain Res Dev Brain Res 72:282–290

    Article  CAS  Google Scholar 

  31. Ganter S, Northoff H, Männel D, Gebicke-Härter PJ (1992) Growth control of cultured microglia. J Neurosci Res 33:218–230. https://doi.org/10.1002/jnr.490330205

    Article  CAS  PubMed  Google Scholar 

  32. Si D, Li J, Liu J et al (2014) Progesterone protects blood-brain barrier function and improves neurological outcome following traumatic brain injury in rats. Exp Ther Med 8:1010–1014. https://doi.org/10.3892/etm.2014.1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ishrat T, Sayeed I, Atif F et al (2010) Progesterone and allopregnanolone attenuate blood-brain barrier dysfunction following permanent focal ischemia by regulating the expression of matrix metalloproteinases. Exp Neurol 226:183–190. https://doi.org/10.1016/j.expneurol.2010.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pettus EH, Wright DW, Stein DG, Hoffman SW (2005) Progesterone treatment inhibits the inflammatory agents that accompany traumatic brain injury. Brain Res 1049:112–119. https://doi.org/10.1016/j.brainres.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  35. Stein DG (2008) Progesterone exerts neuroprotective effects after brain injury. Brain Res Rev 57:386–397. https://doi.org/10.1016/j.brainresrev.2007.06.012

    Article  CAS  PubMed  Google Scholar 

  36. Hammond J, Le Q, Goodyer C et al (2001) Testosterone-mediated neuroprotection through the androgen receptor in human primary neurons. J Neurochem 77:1319–1326. https://doi.org/10.1046/j.1471-4159.2001.00345.x

    Article  CAS  PubMed  Google Scholar 

  37. Rubinow DR, Schmidt PJ (1996) Androgens, brain, and behavior. Am J Psychiatry 153:974–984. https://doi.org/10.1176/ajp.153.8.974

    Article  CAS  PubMed  Google Scholar 

  38. Estrada M, Varshney A, Ehrlich BE (2006) Elevated testosterone induces apoptosis in neuronal cells. J Biol Chem 281:25492–25501. https://doi.org/10.1074/jbc.M603193200

    Article  CAS  PubMed  Google Scholar 

  39. Chen Z, Xi G, Mao Y et al (2011) Effects of progesterone and testosterone on ICH-induced brain injury in rats. Acta neurochirurgica. Springer, Vienna, pp 289–293

    Google Scholar 

  40. Nierwińska K, Nowacka-Chmielewska M, Bernacki J et al (2019) The effect of endurance training and testosterone supplementation on the expression of blood spinal cord barrier proteins in rats. PLoS ONE 14:1–14. https://doi.org/10.1371/journal.pone.0211818

    Article  CAS  Google Scholar 

  41. Szychowski KA, Gmiński J (2020) Elastin-derived peptide VGVAPG affects the proliferation of mouse cortical astrocytes with the involvement of aryl hydrocarbon receptor (Ahr), peroxisome proliferator-activated receptor gamma (Pparγ), and elastin-binding protein (EBP). Cytokine 126:154930. https://doi.org/10.1016/j.cyto.2019.154930

    Article  CAS  PubMed  Google Scholar 

  42. McCARTHY MMM (2008) Estradiol and the developing brain. Physiol Rev 88:91–134. https://doi.org/10.1152/physrev.00010.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Villa A, Vegeto E, Poletti A, Maggi A (2016) Estrogens, neuroinflammation, and neurodegeneration. Endocr Rev 37:372–402. https://doi.org/10.1210/er.2016-1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matthews J, Gustafsson J-A (2006) Estrogen receptor and aryl hydrocarbon receptor signaling pathways. Nucl Recept Signal 4:e016. https://doi.org/10.1621/nrs.04016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Safe S, Wormke M (2003) Inhibitory aryl hydrocarbon receptor-estrogen receptor α cross-talk and mechanisms of action. Chem Res Toxicol 16:807–816. https://doi.org/10.1021/tx034036r

    Article  CAS  PubMed  Google Scholar 

  46. Craig ZR, Wang W, Flaws JA (2011) Endocrine-disrupting chemicals in ovarian function: effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction 142:633–646. https://doi.org/10.1530/REP-11-0136

    Article  CAS  PubMed  Google Scholar 

  47. Ghotbaddini M, Powell JB (2015) The AhR ligand, TCDD, regulates androgen receptor activity differently in androgen-sensitive versus castration-resistant human prostate cancer cells. Int J Environ Res Public Health 12:7506–7518. https://doi.org/10.3390/ijerph120707506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Endl E, Gerdes J (2000) The Ki-67 protein: fascinating forms and an unknown function. Exp Cell Res 257:231–237. https://doi.org/10.1006/excr.2000.4888

    Article  CAS  PubMed  Google Scholar 

  49. Tajima S, Wachi H, Uemura Y, Okamoto K (1997) Modulation by elastin peptide VGVAPG of cell proliferation and elastin expression in human skin fibroblasts. Arch Dermatol Res 289:489–492. https://doi.org/10.1007/s004030050227

    Article  CAS  PubMed  Google Scholar 

  50. Péterszegi G, Robert AM, Robert L (1996) Presence of the elastin-laminin receptor on human activated lymphocytes. C R Acad Sci III 319:799–803

    PubMed  Google Scholar 

  51. Devy J, Duca L, Cantarelli B et al (2010) Elastin-derived peptides enhance melanoma growth in vivo by upregulating the activation of Mcol-A (MMP-1) collagenase. Br J Cancer 103:1562–1570. https://doi.org/10.1038/sj.bjc.6605926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jung S, Rutka JT, Hinek A (1998) Tropoelastin and Elastin Degradation Products Promote Proliferation of Human Astrocytoma Cell Lines. J Neuropathol Exp Neurol 57:439–448. https://doi.org/10.1097/00005072-199805000-00007

    Article  CAS  PubMed  Google Scholar 

  53. Hinek A, Jung S, Rutka JT (1999) Cell surface aggregation of elastin receptor molecules caused by suramin amplified signals leading to proliferation of human glioma cells. Acta Neuropathol 97:399–407

    Article  CAS  Google Scholar 

  54. Dutoya S, Lefeèbvre F, Rabaud M, Verna A (2000) Elastin-derived protein coating onto poly(ethylene terephthalate). Technical, microstructural and biological studies. Biomaterials 21:1521–1529. https://doi.org/10.1016/S0142-9612(99)00274-4

    Article  CAS  PubMed  Google Scholar 

  55. Barbosa-Desongles A, Hernández C, Simó R, Selva DM (2013) Testosterone induces cell proliferation and cell cycle gene overexpression in human visceral preadipocytes. Am J Physiol Physiol 305:C355–C359. https://doi.org/10.1152/ajpcell.00019.2013

    Article  CAS  Google Scholar 

  56. Bielecki B, Mattern C, Ghoumari AM et al (2016) Unexpected central role of the androgen receptor in the spontaneous regeneration of myelin. Proc Natl Acad Sci 113:14829–14834. https://doi.org/10.1073/pnas.1614826113

    Article  CAS  PubMed  Google Scholar 

  57. Lange CA (2008) Integration of progesterone receptor action with rapid signaling events in breast cancer models. J Steroid Biochem Mol Biol 108:203–212. https://doi.org/10.1016/j.jsbmb.2007.09.019

    Article  CAS  PubMed  Google Scholar 

  58. Liu X, Du L, Feng R (2013) C-Src regulates cell cycle proteins expression through protein kinase B/glycogen synthase kinase 3 beta and extracellular signal-regulated kinases 1/2 pathways in MCF-7 cells. Acta Biochim Biophys Sin (Shanghai) 45:586–592. https://doi.org/10.1093/abbs/gmt042

    Article  CAS  Google Scholar 

  59. Migliaccio A, Piccolo D, Castoria G et al (1998) Activation of the Src/p21(ras)/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J 17:2008–2018. https://doi.org/10.1093/emboj/17.7.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao X, Wu T, Chang CF, et al (2015) Toxic role of prostaglandin E < inf > 2</inf > receptor EP1 after intracerebral hemorrhage in mice. Brain Behav Immun 46:293–310. https://doi.org/10.1016/j.bbi.2015.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zan L, Wu H, Jiang J et al (2011) Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia: correlations with angiogenesis and cerebral edema. Neurochem Int 58:872–879. https://doi.org/10.1016/j.neuint.2011.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li P, Chen D, Cui Y et al (2018) Src plays an important role in AGE-induced endothelial cell proliferation, migration, and tubulogenesis. Front Physiol 9:1–14. https://doi.org/10.3389/fphys.2018.00765

    Article  Google Scholar 

  63. Tian H-P, Huang B-S, Zhao J et al (2009) Non-receptor tyrosine kinase Src is required for ischemia-stimulated neuronal cell proliferation via Raf/ERK/CREB activation in the dentate gyrus. BMC Neurosci 10:139. https://doi.org/10.1186/1471-2202-10-139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jacob MP, Fülöp T, Foris G, Robert L (1987) Effect of elastin peptides on ion fluxes in mononuclear cells, fibroblasts, and smooth muscle cells. Proc Natl Acad Sci U S A 84:995–999. https://doi.org/10.1073/pnas.84.4.995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Faury G, Usson Y, Robert-Nicoud M et al (1998) Nuclear and cytoplasmic free calcium level changes induced by elastin peptides in human endothelial cells. Proc Natl Acad Sci U S A 95:2967–2972. https://doi.org/10.1073/pnas.95.6.2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Faury G, Garnier S, Weiss AS et al (1998) Action of tropoelastin and synthetic elastin sequences on vascular tone and on free Ca2 + level in human vascular endothelial cells. Circ Res 82:328–336

    Article  CAS  Google Scholar 

  67. Coquerel B, Poyer F, Torossian F et al (2009) Elastin-derived peptides: matrikines critical for glioblastoma cell aggressiveness in a 3-D system. Glia 57:1716–1726. https://doi.org/10.1002/glia.20884

    Article  PubMed  Google Scholar 

  68. Rothhammer V, Quintana FJ (2019) The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol 19:184–197. https://doi.org/10.1038/s41577-019-0125-8

    Article  CAS  PubMed  Google Scholar 

  69. Boonyaratanakornkit V, Scott MP, Ribon V et al (2001) Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases. Mol Cell 8:269–280. https://doi.org/10.1016/S1097-2765(01)00304-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by statutory funds from the University of Information Technology and Management in Rzeszow, Poland (DS MN 503-05-02-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad A. Szychowski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures were approved by the Bioethics Commission (no. 46/2014, First Local Ethical Committee on Animal Testing at the Jagiellonian University in Krakow), as compliant with European Union law.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szychowski, K.A., Pomianek, T. & Gmiński, J. Elastin-Derived Peptide VGVAPG Affects Production and Secretion of Testosterone in Mouse Astrocyte In Vitro. Neurochem Res 45, 385–394 (2020). https://doi.org/10.1007/s11064-019-02920-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02920-3

Keywords

Navigation