Skip to main content
Log in

Dcf1 Affects Memory and Anxiety by Regulating NMDA and AMPA Receptors

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The hippocampus is critical for memory and emotion and both N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl- 4-isoxazolepropionic acid (AMPA) receptors are known to contribute for those processes. However, the underlying molecular mechanisms remain poorly understood. We have previously found that mice undergo memory decline upon dcf1 deletion through ES gene knockout. In the present study, a nervous system-specific dcf1 knockout (NKO) mouse was constructed, which was found to present severely damaged neuronal morphology. The damaged neurons caused structural abnormalities in dendritic spines and decreased synaptic density. Decreases in hippocampal NMDA and AMPA receptors of NKO mice lead to abnormal long term potentiation (LTP) at DG, with significantly decreased performance in the water maze, elevated- plus maze, open field and light and dark test. Investigation into the underlying molecular mechanisms revealed that dendritic cell factor 1 (Dcf1) contributes for memory and emotion by regulating NMDA and AMPA receptors. Our results broaden the understanding of synaptic plasticity’s role in cognitive function, thereby expanding its known list of functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of progress? Science 285(5435):1870–1874

    Article  CAS  PubMed  Google Scholar 

  2. Muller D et al (2002) LTP, memory and structural plasticity. Curr Mol Med 2(7):605–611

    Article  CAS  PubMed  Google Scholar 

  3. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129(Pt 7):1659–1673

    Article  CAS  PubMed  Google Scholar 

  4. Matsuzaki M et al (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429(6993):761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kirkwood A, Bear MF (1994) Hebbian synapses in visual cortex. J Neurosci 14(3 Pt 2):1634–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Myhrer T (2003) Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res Brain Res Rev 41(2–3):268–287

    Article  CAS  PubMed  Google Scholar 

  7. Cormier RJ, Greenwood AC, Connor JA (2001) Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. J Neurophysiol 85(1):399–406

    Article  CAS  PubMed  Google Scholar 

  8. Baudry M et al (2015) Multiple cellular cascades participate in long-term potentiation and in hippocampus-dependent learning. Brain Res 1621:73–81

    Article  CAS  PubMed  Google Scholar 

  9. Traynelis SF et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Demidchik V et al (2018) Calcium transport across plant membranes: mechanisms and functions. New Phytol 220(1):49–69

    Article  CAS  PubMed  Google Scholar 

  11. Collingridge GL et al (2013) The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 64:13–26

    Article  CAS  PubMed  Google Scholar 

  12. Zhu S, Paoletti P (2015) Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr Opin Pharmacol 20:14–23

    Article  CAS  PubMed  Google Scholar 

  13. Nowak L et al (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465

    Article  CAS  PubMed  Google Scholar 

  14. Henley JM, Barker EA, Glebov OO (2011) Routes, destinations and delays: recent advances in AMPA receptor trafficking. Trends Neurosci 34(5):258–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wen T, Gu P, Chen F (2002) Discovery of two novel functional genes from differentiation of neural stem cells in the striatum of the fetal rat. Neurosci Lett 329(1):101–105

    Article  CAS  PubMed  Google Scholar 

  16. Wang L et al (2008) A novel function of dcf1 during the differentiation of neural stem cells in vitro. Cell Mol Neurobiol 28(6):887–894

    Article  PubMed  Google Scholar 

  17. Li X et al (2012) MicroRNA-351 regulates TMEM 59 (DCF1) expression and mediates neural stem cell morphogenesis. RNA Biol 9(3):292–301

    Article  CAS  PubMed  Google Scholar 

  18. Boada-Romero E et al (2013) TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J 32(4):566–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu Q et al (2018) Dcf1 triggers dendritic spine formation and facilitates memory acquisition. Mol Neurobiol 55(1):763–775

    Article  CAS  PubMed  Google Scholar 

  20. Wang XD et al (2011) Forebrain CRF(1) modulates early-life stress-programmed cognitive deficits. J Neurosci 31(38):13625–13634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chong SA et al (2011) Synaptic dysfunction in hippocampus of transgenic mouse models of Alzheimer's disease: a multi-electrode array study. Neurobiol Dis 44(3):284–291

    Article  CAS  PubMed  Google Scholar 

  22. Balemans MC et al (2013) Hippocampal dysfunction in the Euchromatin histone methyltransferase 1 heterozygous knockout mouse model for Kleefstra syndrome. Hum Mol Genet 22(5):852–866

    Article  CAS  PubMed  Google Scholar 

  23. Pullen AH (1990) Morphometric evidence from C-synapses for phased Nissl body response in alpha-motoneurones retrogradely intoxicated with diphtheria toxin. Brain Res 509(1):8–16

    Article  CAS  PubMed  Google Scholar 

  24. Niu J et al (2015) Propidium iodide (PI) stains Nissl bodies and may serve as a quick marker for total neuronal cell count. Acta Histochem 117(2):182–187

    Article  CAS  PubMed  Google Scholar 

  25. Banerjee J, Fischer CC, Wedegaertner PB (2009) The amino acid motif L/IIxxFE defines a novel actin-binding sequence in PDZ-RhoGEF. Biochemistry 48(33):8032–8043

    Article  CAS  PubMed  Google Scholar 

  26. Tschida KA, Mooney R (2012) Deafening drives cell-type-specific changes to dendritic spines in a sensorimotor nucleus important to learned vocalizations. Neuron 73(5):1028–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gipson CD, Olive MF (2017) Structural and functional plasticity of dendritic spines - root or result of behavior? Genes Brain Behav 16(1):101–117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant Nos. 81271253, and 81471162), the Science and Technology Commission of Shanghai (Grant No. 14JC1402400), and the Key Innovation Project of Shanghai Municipal Education Commission (Grant No. 14ZZ090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieqiao Wen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Q., Xie, J. et al. Dcf1 Affects Memory and Anxiety by Regulating NMDA and AMPA Receptors. Neurochem Res 44, 2499–2505 (2019). https://doi.org/10.1007/s11064-019-02866-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02866-6

Keywords

Navigation