Skip to main content

Advertisement

Log in

Intranasal Delivery of Botulinum Neurotoxin A Protects against Hippocampal Neuron Death in the Lithium-Pilocarpine Rat Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Botulinum neurotoxins (BoNTs) block the release of a series of neurotransmitters, which are pivotal for neuron action. Intrahippocampal administration of BoNTs inhibits glutamate release, protects neurons against cell death, and attenuates epileptic seizures. Compared with intrahippocampal administration, intranasal delivery is less invasive and more practical for chronic drug administration. To assess whether intranasal administration is feasible, we examined the role of botulinum neurotoxin A (BoNT/A) in hippocampal neuronal injury after status epilepticus (SE) induced by pilocarpine. Our data showed BoNT/A could bypass the blood–brain barrier (BBB) and entered the olfactory bulb and hippocampal neurons. In addition, SE could result in up-regulation of pro-apoptotic proteins (Caspase-3, Bax), down-regulation of anti-apoptotic protein Bcl-2 and neuronal death in hippocampus. BoNT/A could suppress the expression of Caspase-3 and Bax, attenuate the decrease of Bcl-2, and inhibit hippocampal neuron death induced by SE. Meanwhile, there was no significant difference in cognitive behavior between the BoNT/A-pretreated rats and normal rats. Thus, we provided a more convenient and less invasive route for taking advantage of BoNT/A in the field of anti-epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349:1257–1266

    Article  PubMed  Google Scholar 

  2. Stafstrom CE, Carmant L (2015) Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med 5(6):a022426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matsumoto H, Ajmonemarsan C (1964) Cellular mechanisms in experimental epileptic seizures. Science 144:193–194

    Article  CAS  PubMed  Google Scholar 

  4. Walther H, Lambert JD, Jones RS, Heinemann U, Hamon B (1986) Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neurosci Lett 69:156–161

    Article  CAS  PubMed  Google Scholar 

  5. Wang T, Li L, Hong W (2017) SNARE proteins in membrane trafficking. Traffic 18:767–775

    Article  CAS  PubMed  Google Scholar 

  6. Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M (2008) Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 28:3689–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barr JR, Moura H, Boyer AE, Woolfitt AR, Kalb SR, Pavlopoulos A, McWilliams LG, Schmidt JG, Martinez RA, Ashley DL (2005) Botulinum neurotoxin detection and differentiation by mass spectrometry. Emerg Infect Dis 11:1578–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bozzi Y, Costantin L, Antonucci F, Caleo M (2006) Action of botulinum neurotoxins in the central nervous system: antiepileptic effects. Neurotox Res 9:197–203

    Article  CAS  PubMed  Google Scholar 

  9. Verderio C, Pozzi D, Pravettoni E, Inverardi F, Schenk U, Coco S, Proux-Gillardeaux V, Galli T, Rossetto O, Frassoni C, Matteoli M (2004) SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 41:599–610

    Article  CAS  PubMed  Google Scholar 

  10. Verderio C, Grumelli C, Raiteri L, Coco S, Paluzzi S, Caccin P, Rossetto O, Bonanno G, Montecucco C, Matteoli M (2007) Traffic of botulinum toxins A and E in excitatory and inhibitory neurons. Traffic 8:142–153

    Article  CAS  PubMed  Google Scholar 

  11. Akaike N, Ito Y, Shin MC, Nonaka K, Torii Y, Harakawa T, Ginnaga A, Kozaki S, Kaji R (2010) Effects of A2 type botulinum toxin on spontaneous miniature and evoked transmitter release from the rat spinal excitatory and inhibitory synapses. Toxicon 56:1315–1326

    Article  CAS  PubMed  Google Scholar 

  12. Akaike N, Shin MC, Wakita M, Torii Y, Harakawa T, Ginnaga A, Kato K, Kaji R, Kozaki S (2013) Transsynaptic inhibition of spinal transmission by A2 botulinum toxin. J Physiol 591:1031–1043

    Article  CAS  PubMed  Google Scholar 

  13. Costantin L, Bozzi Y, Richichi C, Viegi A, Antonucci F, Funicello M, Gobbi M, Mennini T, Rossetto O, Montecucco C, Maffei L, Vezzani A, Caleo M (2005) Antiepileptic effects of botulinum neurotoxin E. J Neurosci 25:1943–1951

    Article  CAS  PubMed  Google Scholar 

  14. Antonucci F, Bozzi Y, Caleo M (2009) Intrahippocampal infusion of botulinum neurotoxin E (BoNT/E) reduces spontaneous recurrent seizures in a mouse model of mesial temporal lobe epilepsy. Epilepsia 50:963–966

    Article  CAS  PubMed  Google Scholar 

  15. Kato K, Akaike N, Kohda T, Torii Y, Goto Y, Harakawa T, Ginnaga A, Kaji R, Kozaki S (2013) Botulinum neurotoxin A2 reduces incidence of seizures in mouse models of temporal lobe epilepsy. Toxicon 74:109–115

    Article  CAS  PubMed  Google Scholar 

  16. Gasior M, Tang R, Rogawski MA (2013) Long-lasting attenuation of amygdala-kindled seizures after convection-enhanced delivery of botulinum neurotoxins A and B into the amygdala in rats. J Pharmacol Exp Ther 346:528–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dhuria SV, Hanson LR, Frey WH 2nd (2010) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99:1654–1673

    Article  CAS  Google Scholar 

  18. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  Google Scholar 

  19. Chen XQ, Fawcett JR, Rahman YE, Ala TA, Frey IW (1998) Delivery of nerve growth factor to the brain via the olfactory pathway. J Alzheimers Dis 1:35–44

    Article  CAS  PubMed  Google Scholar 

  20. Wang C, Xie N, Wang Y, Li Y, Ge X, Wang M (2015) Role of the mitochondrial calcium uniporter in rat hippocampal neuronal death after pilocarpine-induced status epilepticus. Neurochem Res 40:1739–1746

    Article  CAS  PubMed  Google Scholar 

  21. Liu HT, Chen SH, Chancellor MB, Kuo HC (2015) Presence of cleaved synaptosomal-associated protein-25 and decrease of purinergic receptors P2×3 in the bladder urothelium influence efficacy of botulinum toxin treatment for overactive bladder syndrome. PLoS ONE 10:e0134803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xie N, Wang C, Lian Y, Zhang H, Wu C, Zhang Q (2013) A selective inhibitor of Drp1, mdivi-1, protects against cell death of hippocampal neurons in pilocarpine-induced seizures in rats. Neurosci Lett 545:64–68

    Article  CAS  PubMed  Google Scholar 

  23. Li Q, Han Y, Du J, Jin H, Zhang J, Niu M, Qin J (2018) Alterations of apoptosis and autophagy in developing brain of rats with epilepsy: changes in LC3, P62, Beclin-1 and Bcl-2 levels. Neurosci Res 130:47–55

    Article  CAS  PubMed  Google Scholar 

  24. Carmichael ST, Clugnet MC, Price JL (1994) Central olfactory connections in the macaque monkey. J Comp Neurol 346:403–434

    Article  CAS  PubMed  Google Scholar 

  25. Nonaka N, Farr SA, Kageyama H, Shioda S, Banks WA (2008) Delivery of galanin-like peptide to the brain: targeting with intranasal delivery and cyclodextrins. J Pharmacol Exp Ther 325:513–519

    Article  CAS  PubMed  Google Scholar 

  26. Tao H, Zhao J, Liu T, Cai Y, Zhou X, Xing H, Wang Y, Yin M, Zhong W, Liu Z, Li K, Zhao B, Zhou H, Cui L (2017) Intranasal delivery of miR-146a mimics delayed seizure onset in the lithium-pilocarpine mouse model. Mediat Inflamm 2017:6512620

    Google Scholar 

  27. Wu C, Xie N, Lian Y, Xu H, Chen C, Zheng Y, Chen Y, Zhang H (2016) Central antinociceptive activity of peripherally applied botulinum toxin type A in lab rat model of trigeminal neuralgia. Springerplus 5:431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salvesen GS (2002) Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 9:3–5

    Article  CAS  PubMed  Google Scholar 

  29. Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ, Los M (2009) Apoptosis and cancer: mutations within caspase genes. J Med Genet 46:497–510

    Article  CAS  PubMed  Google Scholar 

  30. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  PubMed  Google Scholar 

  31. Liou AK, Clark RS, Henshall DC, Yin XM, Chen J (2003) To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol 69:103–142

    Article  CAS  PubMed  Google Scholar 

  32. Liu G, Wang J, Deng XH, Ma PS, Li FM, Peng XD, Niu Y, Sun T, Li YX, Yu JQ (2017) The Anticonvulsant and neuroprotective effects of oxysophocarpine on pilocarpine-induced convulsions in adult male mice. Cell Mol Neurobiol 37:339–349

    Article  CAS  PubMed  Google Scholar 

  33. Manno I, Antonucci F, Caleo M, Bozzi Y (2007) BoNT/E prevents seizure-induced activation of caspase 3 in the rat hippocampus. Neuroreport 18:373–376

    Article  CAS  PubMed  Google Scholar 

  34. Shin MC, Wakita M, Xie DJ, Yamaga T, Iwata S, Torii Y, Harakawa T, Ginnaga A, Kozaki S, Akaike N (2012) Inhibition of membrane Na+ channels by A type botulinum toxin at femtomolar concentrations in central and peripheral neurons. J Pharmacol Sci 118:33–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81771397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Lian.

Ethics declarations

Conflict of interest

No conflicts of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

The photos of native stained gels by coomassie blue staining (TIF 4193 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Lian, Y., Chen, Y. et al. Intranasal Delivery of Botulinum Neurotoxin A Protects against Hippocampal Neuron Death in the Lithium-Pilocarpine Rat Model. Neurochem Res 44, 1262–1268 (2019). https://doi.org/10.1007/s11064-019-02775-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02775-8

Keywords

Navigation