Skip to main content

Advertisement

Log in

Interleukin-1 Receptor Associated Kinase 1 Mediates the Maintenance of Neuropathic Pain after Chronic Constriction Injury in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuropathic pain (NP) has complicated pathogenesis as it mainly involves a lesion or dysfunction of the somatosensory nervous system and its clinical treatment remains challenging. Chronic constriction injury (CCI) model is a widely used neuropathic pain model and involved in mechanisms including both nerve inflammatory and injury. Cytokines and their receptors play essential roles in the occurrence and persistence of neuropathic pain, but the underlying mechanisms have not well been understood. Therefore, Interleukin-1 receptor-associated kinase 1 (IRAK1) is chosen to explore the possible mechanisms of NP. In the present study, IRAK1 was found to persistently increase in the dorsal root ganglion (DRG) and spinal cord (SC) during CCI detected by western blot. The staining further confirmed that IRAK1 was mainly co-located in the DRG astrocytes or SC neurons, but less in the DRG microglia or SC astrocytes. Moreover, the region of increased IRAK1 expression was observed in superficial laminae of the spinal dorsal horn, which was the nociceptive neuronal expression domain, suggesting that IRAK1 may mediated CCI-induced pain by nociceptive primary afferent. In addition, intrathecal injection of Toll-like receptor 4 (TLR4) inhibitor or IRAK1 siRNA decreased the expression of IRAK1 accompanied with the alleviation of CCI-induced neuropathic pain. The upregulation of p-NF-κB expression was reversed by IRAK1 siRNA in SC, and intrathecal injection of p-NF-κB inhibitor relieved neuropathic pain. Taking together, targeting IRAK1 may be a potential treatment for chronic neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ochoa JL (2009) Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 72(14):1282–1283. https://doi.org/10.1212/01.wnl.0000346325.50431.5f

    Article  PubMed  Google Scholar 

  2. Zhu X, Cao S, Zhu MD, Liu JQ, Chen JJ, Gao YJ (2014) Contribution of chemokine CCL2/CCR2 signaling in the dorsal root ganglion and spinal cord to the maintenance of neuropathic pain in a rat model of lumbar disc herniation. J Pain 15(5):516–526. https://doi.org/10.1016/j.jpain.2014.01.492

    Article  CAS  PubMed  Google Scholar 

  3. Nishimoto S, Okada K, Tanaka H, Okamoto M, Fujisawa H, Okada T, Naiki M, Murase T, Yoshikawa H (2016) Neurotropin attenuates local inflammatory response and inhibits demyelination induced by chronic constriction injury of the mouse sciatic nerve. Biologicals 44(4):206–211. https://doi.org/10.1016/j.biologicals.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  4. de Souza Grava AL, Ferrari LF, Defino HL (2012) Cytokine inhibition and time-related influence of inflammatory stimuli on the hyperalgesia induced by the nucleus pulposus. Eur Spine J 21(3):537–545. https://doi.org/10.1007/s00586-011-2027-8

    Article  PubMed  Google Scholar 

  5. Gao YJ, Ji RR (2010) Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 126(1):56–68. https://doi.org/10.1016/j.pharmthera.2010.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hashizume H, DeLeo JA, Colburn RW, Weinstein JN (2000) Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine (Phila Pa 1976) 25(10):1206–1217

    Article  CAS  Google Scholar 

  7. Gwak YS, Hulsebosch CE, Leem JW (2017) Neuronal–glial interactions maintain chronic neuropathic pain after spinal cord injury. Neural Plast 2017:2480689. https://doi.org/10.1155/2017/2480689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang H, Hao P, Zhang H, Xu C, Zhao J (2018) MicroRNA-223 inhibits lipopolysaccharide-induced inflammatory response by directly targeting Irak1 in the nucleus pulposus cells of intervertebral disc. IUBMB Life. https://doi.org/10.1002/iub.1747

    Article  PubMed  Google Scholar 

  9. Chou CK, Chi SY, Huang CH, Chou FF, Huang CC, Liu RT, Kang HY (2016) IRAK1, a target of miR-146b, reduces cell aggressiveness of human papillary thyroid carcinoma. J Clin Endocrinol Metab 101(11):4357–4366. https://doi.org/10.1210/jc.2016-2276

    Article  CAS  PubMed  Google Scholar 

  10. Cao Z, Henzel WJ, Gao X (1996) IRAK: a kinase associated with the interleukin-1 receptor. Science 271(5252):1128–1131

    Article  CAS  PubMed  Google Scholar 

  11. Janssens S, Beyaert R (2003) Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell 11(2):293–302

    Article  CAS  PubMed  Google Scholar 

  12. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV (1996) TRAF6 is a signal transducer for interleukin-1. Nature 383(6599):443–446. https://doi.org/10.1038/383443a0

    Article  CAS  PubMed  Google Scholar 

  13. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7(6):837–847

    Article  CAS  PubMed  Google Scholar 

  14. Christianson CA, Dumlao DS, Stokes JA, Dennis EA, Svensson CI, Corr M, Yaksh TL (2011) Spinal TLR4 mediates the transition to a persistent mechanical hypersensitivity after the resolution of inflammation in serum-transferred arthritis. Pain 152(12):2881–2891. https://doi.org/10.1016/j.pain.2011.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanga FY, Nutile-McMenemy N, DeLeo JA (2005) The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci USA 102(16):5856–5861. https://doi.org/10.1073/pnas.0501634102

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Zhang H, Zhang H, Kosturakis AK, Jawad AB, Dougherty PM (2014) Toll-like receptor 4 signaling contributes to Paclitaxel-induced peripheral neuropathy. J Pain 15(7):712–725. https://doi.org/10.1016/j.jpain.2014.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li S, Strelow A, Fontana EJ, Wesche H (2002) IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA 99(8):5567–5572. https://doi.org/10.1073/pnas.082100399

    Article  CAS  PubMed  Google Scholar 

  18. Talreja J, Talwar H, Ahmad N, Rastogi R, Samavati L (2016) Dual inhibition of Rip2 and IRAK1/4 regulates IL-1beta and IL-6 in sarcoidosis alveolar macrophages and peripheral blood mononuclear cells. J Immunol 197(4):1368–1378. https://doi.org/10.4049/jimmunol.1600258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li X, Commane M, Burns C, Vithalani K, Cao Z, Stark GR (1999) Mutant cells that do not respond to interleukin-1 (IL-1) reveal a novel role for IL-1 receptor-associated kinase. Mol Cell Biol 19(7):4643–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adams AK, Bolanos LC, Dexheimer PJ, Karns RA, Aronow BJ, Komurov K, Jegga AG, Casper KA, Patil YJ, Wilson KM, Starczynowski DT, Wells SI (2015) IRAK1 is a novel DEK transcriptional target and is essential for head and neck cancer cell survival. Oncotarget 6(41):43395–43407. https://doi.org/10.18632/oncotarget.6028

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kollewe C, Mackensen AC, Neumann D, Knop J, Cao P, Li S, Wesche H, Martin MU (2004) Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J Biol Chem 279(7):5227–5236. https://doi.org/10.1074/jbc.M309251200

    Article  CAS  PubMed  Google Scholar 

  22. Thomas JA, Allen JL, Tsen M, Dubnicoff T, Danao J, Liao XC, Cao Z, Wasserman SA (1999) Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J Immunol 163(2):978–984

    CAS  PubMed  Google Scholar 

  23. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    Article  CAS  Google Scholar 

  24. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

    Article  CAS  PubMed  Google Scholar 

  25. Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W, Greig NH, Rosi S (2012) TNF-alpha protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflamm 9:23. https://doi.org/10.1186/1742-2094-9-23

    Article  CAS  Google Scholar 

  26. Murakami Y, Mizoguchi F, Saito T, Miyasaka N, Kohsaka H (2012) p16(INK4a) exerts an anti-inflammatory effect through accelerated IRAK1 degradation in macrophages. J Immunol 189(10):5066–5072. https://doi.org/10.4049/jimmunol.1103156

    Article  CAS  PubMed  Google Scholar 

  27. Gao Y, Xu X, Feng J, Ma Y, Zheng D, Meng Y, Shan F (2016) Effects of interleukin-1 receptor-associated kinase 1 RNA interference in dendritic cells on inflammatory cytokine release and T-cell proliferation. Mol Med Rep 14(6):5685–5692. https://doi.org/10.3892/mmr.2016.5946

    Article  CAS  PubMed  Google Scholar 

  28. Zhang ZJ, Jiang BC, Gao YJ (2017) Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci. https://doi.org/10.1007/s00018-017-2513-1

    Article  PubMed  PubMed Central  Google Scholar 

  29. Piao Y, Gwon DH, Kang DW, Hwang TW, Shin N, Kwon HH, Shin HJ, Yin Y, Kim JJ, Hong J, Kim HW, Kim Y, Kim SR, Oh SH, Kim DW (2018) TLR4-mediated autophagic impairment contributes to neuropathic pain in chronic constriction injury mice. Mol Brain 11(1):11. https://doi.org/10.1186/s13041-018-0354-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pan R, Di H, Zhang J, Huang Z, Sun Y, Yu W, Wu F (2015) Inducible lentivirus-mediated siRNA against TLR4 reduces nociception in a rat model of bone cancer pain. Mediat Inflamm. https://doi.org/10.1155/2015/523896

    Article  Google Scholar 

  31. Nong X, Lan Y (2018) Picroside II attenuates CCI-induced neuropathic pain in rats by inhibiting spinal reactive astrocyte-mediated neuroinflammation through the NF-kappaB pathway. Neurochem Res. https://doi.org/10.1007/s11064-018-2518-7

    Article  PubMed  Google Scholar 

  32. Lu Y, Jiang BC, Cao DL, Zhang ZJ, Zhang X, Ji RR, Gao YJ (2014) TRAF6 upregulation in spinal astrocytes maintains neuropathic pain by integrating TNF-alpha and IL-1beta signaling. Pain 155(12):2618–2629. https://doi.org/10.1016/j.pain.2014.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lv F, Huang Y, Lv W, Yang L, Li F, Fan J, Sun J (2017) MicroRNA-146a ameliorates inflammation via TRAF6/NF-kappaB pathway in intervertebral disc cells. Med Sci Monit 23:659–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Su J, Richter K, Zhang C, Gu Q, Li L (2007) Differential regulation of interleukin-1 receptor associated kinase 1 (IRAK1) splice variants. Mol Immunol 44(5):900–905. https://doi.org/10.1016/j.molimm.2006.03.021

    Article  CAS  PubMed  Google Scholar 

  35. Rao N, Nguyen S, Ngo K, Fung-Leung WP (2005) A novel splice variant of interleukin-1 receptor (IL-1R)-associated kinase 1 plays a negative regulatory role in Toll/IL-1R-induced inflammatory signaling. Mol Cell Biol 25(15):6521–6532. https://doi.org/10.1128/MCB.25.15.6521-6532.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yanagisawa K, Tago K, Hayakawa M, Ohki M, Iwahana H, Tominaga S (2003) A novel splice variant of mouse interleukin-1-receptor-associated kinase-1 (IRAK-1) activates nuclear factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK). Biochem J 370(Pt 1):159–166. https://doi.org/10.1042/BJ20021218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shan SJ, Liu DZ, Wang L, Zhu YY, Zhang FM, Li T, An LG, Yang GW (2015) Identification and expression analysis of irak1 gene in common carp Cyprinus carpio L.: indications for a role of antibacterial and antiviral immunity. J Fish Biol 87(2):241–255. https://doi.org/10.1111/jfb.12714

    Article  CAS  PubMed  Google Scholar 

  38. Jensen LE, Whitehead AS (2001) IRAK1b, a novel alternative splice variant of interleukin-1 receptor-associated kinase (IRAK), mediates interleukin-1 signaling and has prolonged stability. J Biol Chem 276(31):29037–29044. https://doi.org/10.1074/jbc.M103815200

    Article  CAS  PubMed  Google Scholar 

  39. Costigan M, Scholz J, Woolf CJ (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 32:1–32. https://doi.org/10.1146/annurev.neuro.051508.135531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim JE, Kim SY, Lim SY, Kieff E, Song YJ (2014) Role of Ca2+/calmodulin-dependent kinase II-IRAK1 interaction in LMP1-induced NF-kappaB activation. Mol Cell Biol 34(3):325–334. https://doi.org/10.1128/MCB.00912-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu J, Peng S, Xiao L, Cheng X, Kuang H, Zhu M, Zhang D, Jiang C, Liu T (2018) Cell-type specific distribution of T-type calcium currents in lamina II neurons of the rat spinal cord. Front Cell Neurosci 12:370. https://doi.org/10.3389/fncel.2018.00370

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huang SJ, Yan JQ, Luo H, Zhou LY, Luo JG (2018) IL-33/ST2 signaling contributes to radicular pain by modulating MAPK and NF-kappaB activation and inflammatory mediator expression in the spinal cord in rat models of noncompressive lumber disk herniation. J Neuroinflamm 15(1):12. https://doi.org/10.1186/s12974-017-1021-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation for Young Scientists of China (Nos. 81502053); Nantong science and technology project (MS22016008); Nantong science and technology project for Young Scientists (WQ2016085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingbing Fan or Zhongling Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use Committee of Nantong University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, D., Chen, Y., Li, Y. et al. Interleukin-1 Receptor Associated Kinase 1 Mediates the Maintenance of Neuropathic Pain after Chronic Constriction Injury in Rats. Neurochem Res 44, 1214–1227 (2019). https://doi.org/10.1007/s11064-019-02767-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02767-8

Keywords

Navigation