Skip to main content
Log in

GABAA Modulation of S100B Secretion in Acute Hippocampal Slices and Astrocyte Cultures

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes are the major glial cells in brain tissue and are involved, among many functions, ionic and metabolic homeostasis maintenance of synapses. These cells express receptors and transporters for neurotransmitters, including GABA. GABA signaling is reportedly able to affect astroglial response to injury, as evaluated by specific astrocyte markers such as glial fibrillary acid protein and the calcium-binding protein, S100B. Herein, we investigated the modulatory effects of the GABAA receptor on astrocyte S100B secretion in acute hippocampal slices and astrocyte cultures, using the agonist, muscimol, and the antagonists pentylenetetrazol (PTZ) and bicuculline. These effects were analyzed in the presence of tetrodotoxin (TTX), fluorocitrate (FLC), cobalt and barium. PTZ positively modify S100B secretion in hippocampal slices and astrocyte cultures; in contrast, bicuculline inhibited S100B secretion only in hippocampal slices. Muscimol, per se, did not change S100B secretion, but prevented the effects of PTZ and bicuculline. Moreover, PTZ-induced S100B secretion was prevented by TTX, FLC, cobalt and barium indicating a complex GABAA communication between astrocytes and neurons. The effects of two putative agonists of GABAA, β-hydroxybutyrate and methylglyoxal, on S100B secretion were also evaluated. In view of the neurotrophic role of extracellular S100B under conditions of injury, our data reinforce the idea that GABAA receptors act directly on astrocytes, and indirectly on neurons, to modulate astroglial response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431. https://doi.org/10.1016/j.tins.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  2. Butt AM, Kalsi A (2006) Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med 10:33–44. https://doi.org/10.1111/j.1582-4934.2006.tb00289.x

    Article  CAS  PubMed  Google Scholar 

  3. Roberta A, Rossella B (2010) Aquaporins and Glia. Curr Neuropharmacol 8:84–91

    Article  CAS  Google Scholar 

  4. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  5. Parpura V, Basarky TA, Liu F et al (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747. https://doi.org/10.1038/369744a0

    Article  CAS  PubMed  Google Scholar 

  6. Pellerin L, Bouzier-Sore A-K, Aubert A et al (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262. https://doi.org/10.1002/glia.20528

    Article  PubMed  Google Scholar 

  7. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab. https://doi.org/10.1038/sj.jcbfm.9600521

    Article  PubMed  Google Scholar 

  8. Dickinson DA, Forman HJ (2002) Cellular glutathione and thiols metabolism. Biochem Pharmacol 64:1019–1026. https://doi.org/10.1016/S0006-2952(02)01172-3

    Article  CAS  PubMed  Google Scholar 

  9. Anlauf E, Derouiche A (2013) Glutamine synthetase as an astrocytic marker: its cell type and vesicle localization. Front Endocrinol (Lausanne) 4:1–5. https://doi.org/10.3389/fendo.2013.00144

    Article  Google Scholar 

  10. Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–455. https://doi.org/10.1016/S0301-0082(96)00068-8

    Article  CAS  PubMed  Google Scholar 

  11. Bureau M, Laschet J, Bureau-Heeren M et al (1995) Astroglial cells express large amounts of GABAA receptor proteins in mature brain. J Neurochem 65:2006–2015

    Article  CAS  PubMed  Google Scholar 

  12. Hoft S, Griemsmann S, Seifert G, Steinhauser C (2014) Heterogeneity in expression of functional ionotropic glutamate and GABA receptors in astrocytes across brain regions: insights from the thalamus. Philos Trans R Soc B 369:20130602. https://doi.org/10.1098/rstb.2013.0602

    Article  CAS  Google Scholar 

  13. Fraser DD, Mudrick-Donnon LA, Macvicar BA (1994) Astrocytic GABA receptors. Glia 11:83–93. https://doi.org/10.1002/glia.440110203

    Article  CAS  PubMed  Google Scholar 

  14. Bekar L, Jabs R, Walz W (1999) GABA A receptor agonists modulate K+ currents in adult hippocampal glial cells in situ. Glia 26:129–138

    Article  CAS  PubMed  Google Scholar 

  15. Chiò A, Pagani M, Agosta F et al (2014) Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet Neurol 13:1228–1240. https://doi.org/10.1016/S1474-4422(14)70167-X

    Article  PubMed  Google Scholar 

  16. Robel S, Buckingham SC, Boni JL et al (2015) Reactive astrogliosis causes the development of spontaneous seizures. J Neurosci 35:3330–3345. https://doi.org/10.1523/JNEUROSCI.1574-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khalilov I, Khazipov R, Esclapez M, Ben-Ari Y (1997) Bicuculline induces ictal seizures in the intact hippocampus recorded in vitro. Eur J Pharmacol 319:5–6

    Article  Google Scholar 

  18. Bingmann D, Speckman EJ (1986) Actions of pentylenetetrazol (PTZ) on CA3 neurons in hippocampal slices of guinea pigs. Exp Brain Res 64:94–104

    Article  CAS  PubMed  Google Scholar 

  19. Joukar S, Atapour N, Kalantaripour T et al (2011) Differential modulatory actions of GABAAagonists on susceptibility to GABAAantagonists-induced seizures in morphine dependent rats: possible mechanisms in seizure propensity. Pharmacol Biochem Behav 99:17–21. https://doi.org/10.1016/j.pbb.2011.03.012

    Article  CAS  PubMed  Google Scholar 

  20. Baydas G, Sonkaya E, Tuzcu M et al (2005) Novel role for gabapentin in neuroprotection of central nervous system in streptozotocine-induced diabetic rats. Acta Pharmacol Sin 26:417–422. https://doi.org/10.1111/j.1745-7254.2005.00072.x

    Article  CAS  PubMed  Google Scholar 

  21. Egashira N, Hayakawa K, Osajima M et al (2007) Involvement of GABA A receptors in the neuroprotective effect of theanine on focal cerebral ischemia in mice. J Pharmacol Sci 105:211–214. https://doi.org/10.1254/jphs.SCZ070901

    Article  CAS  PubMed  Google Scholar 

  22. Bahçekapılı N, Akgün-Dar K, Albeniz I et al (2014) Erythropoietin pretreatment suppresses seizures and prevents the increase in inflammatory mediators during pentylenetetrazole-induced generalized seizures. Int J Neurosci 124:762–770. https://doi.org/10.3109/00207454.2013.878935

    Article  CAS  PubMed  Google Scholar 

  23. Tateishi N, Shimoda T, Manako J, ichiro et al (2006) Relevance of astrocytic activation to reductions of astrocytic GABAA receptors. Brain Res 1089:79–91. https://doi.org/10.1016/j.brainres.2006.02.139

    Article  CAS  PubMed  Google Scholar 

  24. Donato R, Sorci G, Riuzzi F et al (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793:1008–1022. https://doi.org/10.1016/j.bbamcr.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  25. Kleindienst A, Meissner S, Eyupoglu IY et al (2010) Dynamics of S100B release into serum and cerebrospinal fluid following acute brain injury. Acta Neurochir Suppl 106:247–250. https://doi.org/10.1007/978-3-211-98811-4

    Article  CAS  PubMed  Google Scholar 

  26. Gonçalves CA, Concli Leite M, Nardin P (2008) Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem 41:755–763. https://doi.org/10.1016/j.clinbiochem.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  27. Vizuete AFK, Mittmann MH, Gonçalves CA, De Oliveira DL (2017) Phase-dependent astroglial alterations in Li—pilocarpine-induced status epilepticus in young rats. Neurochem Res. https://doi.org/10.1007/s11064-017-2276-y

    Article  PubMed  Google Scholar 

  28. Tramontina F, Leite MC, Gonçalves D et al (2006) High glutamate decreases S100B secretion by a mechanism dependent on the glutamate transporter. Neurochem Res 31:815–820. https://doi.org/10.1007/s11064-006-9085-z

    Article  CAS  PubMed  Google Scholar 

  29. de Souza DF, Wartchow K, Hansen F et al (2013) Interleukin-6-induced S100B secretion is inhibited by haloperidol and risperidone. Prog Neuro-Psychopharmacol Biol Psychiatry 43:14–22. https://doi.org/10.1016/j.pnpbp.2012.12.001

    Article  CAS  Google Scholar 

  30. Distler MG, Plant LD, Sokoloff G et al (2012) Glyoxalase 1 increases anxiety by reducing GABA A receptor agonist methylglyoxal. J Clin Invest 122:2306–2315. https://doi.org/10.1172/JCI61319DS1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tanner GR, Lutas A, Martínez-François JR, Yellen G (2011) Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons. J Neurosci 31:8689–8696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hansen F, Battú CE, Dutra MF et al (2016) Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation. Amino Acids 48:375–385. https://doi.org/10.1007/s00726-015-2091-1

    Article  CAS  PubMed  Google Scholar 

  33. Leite M, Frizzo JK, Nardin P et al (2004) Beta-hydroxy-butyrate alters the extracellular content of S100B in astrocyte cultures. Brain Res Bull 64:139–143. https://doi.org/10.1016/j.brainresbull.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  34. Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739. https://doi.org/10.1038/nrn920

    Article  CAS  PubMed  Google Scholar 

  35. Nardin P, Tortorelli L, Quincozes-Santos A et al (2009) S100B secretion in acute brain slices: modulation by extracellular levels of Ca2+ and K+. Neurochem Res 34:1603–1611. https://doi.org/10.1007/s11064-009-9949-0

    Article  CAS  PubMed  Google Scholar 

  36. Ballerini L, Galante M (1998) Network bursting by organotypic spinal slice cultures in the presence of bicuculline and/or strychnine is developmentally regulated. Eur J Neurosci 10:2871–2879

    Article  CAS  PubMed  Google Scholar 

  37. Zhu H, Chen MF, Yu WJ et al (2012) Time-dependent changes in BDNF expression of pentylenetetrazole-induced hippocampal astrocytes in vitro. Brain Res 1439:1–6. https://doi.org/10.1016/j.brainres.2011.12.035

    Article  CAS  PubMed  Google Scholar 

  38. Samoilova M, Li J, Pelletier MR et al (2003) Epileptiform activity in hippocampal slice cultures exposed chronically to bicuculline: increased gap junctional function and expression. J Neurochem 86:687–699. https://doi.org/10.1046/j.1471-4159.2003.01893.x

    Article  CAS  PubMed  Google Scholar 

  39. Gottfried C, Cechin SR, Gonzalez MA et al (2003) The influence of the extracellular matrix on the morphology and ph of cultured astrocytes exposed to media lacking bicarbonate. Neuroscience 121:553–562. https://doi.org/10.1016/S0306-4522(03)00557-8

    Article  CAS  PubMed  Google Scholar 

  40. Hansen M, Nielsen S, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210

    Article  CAS  PubMed  Google Scholar 

  41. Leite MC, Galland F, Brolese G et al (2008) A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods 169:93–99. https://doi.org/10.1016/j.jneumeth.2007.11.021

    Article  CAS  PubMed  Google Scholar 

  42. Hartman AL, Gasior M, Vining EPG, Rogawski MA (2007) The neuropharmacology of the ketogenic diet. Pediatr Neurol 36:281–292. https://doi.org/10.1016/j.pediatrneurol.2007.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  43. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215. https://doi.org/10.1016/S0166-2236(98)01349-6

    Article  CAS  PubMed  Google Scholar 

  44. Kersanté F, Rowley SCS, Pavlov I, Semyanov A (2013) A functional role for both γ-aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. J Physiol 10:2429–2441. https://doi.org/10.1113/jphysiol.2012.246298

    Article  CAS  Google Scholar 

  45. Lee M, Schwab C, Mcgeer PL (2011) Astrocytes are GABAergic cells that modulate microglial activity. Glia 59:152–165. https://doi.org/10.1002/glia.21087

    Article  PubMed  Google Scholar 

  46. Angulo M, Meur K, Kozlov A et al (2008) GABA, a forgotten gliotransmitter. Prog Neurobiol 86:297–303. https://doi.org/10.1016/j.pneurobio.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  47. Van Eldik LJ, Wainwright MS (2003) The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci 21:97–108

    PubMed  Google Scholar 

  48. Nishiyama H, Knopfel T, Endo S, Itohara S (2002) Glial protein S100B modulates long-term neuronal synaptic plasticity. PNAS 99:4037–4042. https://doi.org/10.1073/pnas.052020999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nardin P, Tramontina AC, Quincozes-Santos A et al (2011) In vitro S100B secretion is reduced by apomorphine: effects of antipsychotics and antioxidants. Prog Neuro-Psychopharmacol Biol Psychiatry 35:1291–1296. https://doi.org/10.1016/j.pnpbp.2011.04.004

    Article  CAS  Google Scholar 

  50. Goncalves D, Karl J, Leite M et al (2002) High glutamate decreases S100B secretion stimulated by serum deprivation in astrocytes. Neuroreport 13:1533–1535

    Article  CAS  PubMed  Google Scholar 

  51. Atack JR (2010) Development of subtype-selective GABAA receptor compounds for the treatment of anxiety, sleep disorders and epilepsy. In Monti JM et al (eds) GABA and sleep. Springer, Basel. https://doi.org/10.1007/978-3-0346-0226-6-2

    Chapter  Google Scholar 

  52. Lee V, Maguire J (2014) The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front Neural Circuits 8:1–27. https://doi.org/10.3389/fncir.2014.00003

    Article  CAS  Google Scholar 

  53. Samokhina E, Samokhin A (2018) Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int J Neurosci 7454:1–11. https://doi.org/10.1080/00207454.2018.1481064

    Article  CAS  Google Scholar 

  54. Pinto SS, Gottfried C, Mendez A et al (2000) Immunocontent and secretion of S100B in astrocyte cultures from different brain regions in relation to morphology. FEBS Lett 486:203–207. https://doi.org/10.1016/S0014-5793(00)02301-2

    Article  CAS  PubMed  Google Scholar 

  55. Leite MC, Galland F, Guerra MC et al (2017) S100B secretion is mediated by Ca2+ from endoplasmic reticulum: a study using DMSO as a tool for intracellular Ca2+ mobilization. Glia 65:E103–E578. https://doi.org/10.1002/glia.23157

    Article  Google Scholar 

  56. Büyükuysal RL (2005) Protein S100B release from rat brain slices during and after ischemia: comparison with lactate dehydrogenase leakage. Neurochem Int 47:580–588. https://doi.org/10.1016/j.neuint.2005.06.009

    Article  CAS  PubMed  Google Scholar 

  57. Boddum K, Jensen TP, Magloire V et al (2016) Astrocytic GABA transporter activity modulates excitatory neurotransmission. Nat Commun 7:1–10. https://doi.org/10.1038/ncomms13572

    Article  CAS  Google Scholar 

  58. Choi HB, Gordon GRJ, Zhou N et al (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104. https://doi.org/10.1016/j.neuron.2012.08.032.Metabolic

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Khawaled R, Bruening-Wright A, Adelman JP, Maylie J (1999) Bicuculline block of small-conductance calcium-activated potassium channels. Pflugers Arch Eur J Physiol 438:314–321. https://doi.org/10.1007/s004240050915

    Article  CAS  Google Scholar 

  60. Meng X, Wang F, Li K (2014) Resveratrol is neuroprotective and improves cognition in pentylenetetrazole-kindling model of epilepsy in rats. Indian J Pharm Sci 76:125–131

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wartchow KM, Tramontina AC, de Souza DF et al (2016) Insulin stimulates S100B secretion and these proteins antagonistically modulate brain glucose metabolism. Neurochem Res 41:1420–1429. https://doi.org/10.1007/s11064-016-1851-y

    Article  CAS  PubMed  Google Scholar 

  62. Thornalley PJ (1993) The glyoxalase system in health and disease. Mol Asp Med 14:287–371. https://doi.org/10.1016/0098-2997(93)90002-U

    Article  CAS  Google Scholar 

  63. Distefano MD (2014) GLO1 inhibitors for neuropsychiatric and anti-epileptic drug development. Biochem Soc Trans 42:213–223. https://doi.org/10.1007/978-1-62703-673-3

    Article  Google Scholar 

  64. Allaman I, Bélanger M, Magistretti PJ (2015) Methylglyoxal, the dark side of glycolysis. Front Neurosci 9:1–12. https://doi.org/10.3389/fnins.2015.00023

    Article  Google Scholar 

  65. Suzuki Y, Takahashi H, Fukuda M et al (2009) β-hydroxybutyrate alters GABA-transaminase activity in cultured astrocytes. Brain Res 1268:17–23. https://doi.org/10.1016/j.brainres.2009.02.074

    Article  CAS  PubMed  Google Scholar 

  66. Li J, O’Leary EI, Tanner GR (2017) The ketogenic diet metabolite beta-hydroxybutyrate (β-HB) reduces incidence of seizure-like activity (SLA) in a Katp- and GABAb-dependent manner in a whole-animal Drosophila melanogaster model. Epilepsy Res 133:6–9. https://doi.org/10.1016/j.eplepsyres.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  67. Ziegler DR, Oliveira DL, Pires C et al (2004) Ketogenic diet fed rats have low levels of S100B in cerebrospinal fluid. Neurosci Res 50:375–379. https://doi.org/10.1016/j.neures.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  68. Vizuete AF, De Souza DF, Guerra MC et al (2013) Brain changes in BDNF and S100B induced by ketogenic diets in Wistar rats. Life Sci. https://doi.org/10.1016/j.lfs.2013.03.004

    Article  PubMed  Google Scholar 

  69. Lange S, Bak L, Waagepetersen H et al (2012) Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 37:2569–2588. https://doi.org/10.1007/s11064-012-0868-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bekar LK, Jabs R, Walz W (1999) GABAA receptor agonists modulate K+ currents in adult hippocampal glial cells in situ. Glia. https://doi.org/10.1002/(SICI)1098-1136(199904)26:2%3C129::AID-GLIA4%3E3.0.CO;2-7

    Article  PubMed  Google Scholar 

  71. Mielke JG, Wang YT (2005) Insulin exerts neuroprotection by counteracting the decrease in cell-surface GABAA receptors following oxygen-glucose deprivation in cultured cortical neurons. J Neurochem 92:103–113. https://doi.org/10.1111/j.1471-4159.2004.02841.x

    Article  CAS  PubMed  Google Scholar 

  72. Llorente IL, Perez-Rodriguez D, Martínez-Villayandre B et al (2013) GABAA receptor chloride channels are involved in the neuroprotective role of GABA following oxygen and glucose deprivation in the rat cerebral cortex but not in the hippocampus. Brain Res 1533:141–151. https://doi.org/10.1016/j.brainres.2013.08.024

    Article  CAS  PubMed  Google Scholar 

  73. Parthoens J, Servaes S, Verhaeghe J et al (2015) Prelimbic cortical injections of a gaba agonist and antagonist: in vivo quantification of the effect in the rat brain using [(18)F] FDG microPET. Mol Imaging Biol 17:856–864. https://doi.org/10.1007/s11307-015-0859-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Fernanda K. Vizuete.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vizuete, A.F.K., Hansen, F., Da Ré, C. et al. GABAA Modulation of S100B Secretion in Acute Hippocampal Slices and Astrocyte Cultures. Neurochem Res 44, 301–311 (2019). https://doi.org/10.1007/s11064-018-2675-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2675-8

Keywords

Navigation