Intracardiac Injection of Dental Pulp Stem Cells After Neonatal Hypoxia-Ischemia Prevents Cognitive Deficits in Rats


Neonatal hypoxia-ischemia (HI) is associated to cognitive and motor impairments and until the moment there is no proven treatment. The underlying neuroprotective mechanisms of stem cells are partially understood and include decrease in excitotoxicity, apoptosis and inflammation suppression. This study was conducted in order to test the effects of intracardiac transplantation of human dental pulp stem cells (hDPSCs) for treating HI damage. Seven-day-old Wistar rats were divided into four groups: sham-saline, sham-hDPSCs, HI-saline, and HI-hDPSCs. Motor and cognitive tasks were performed from postnatal day 30. HI-induced cognitive deficits in the novel-object recognition test and in spatial reference memory impairment which were prevented by hDPSCs. No motor impairments were observed in HI animals. Immunofluorescence analysis showed human-positive nuclei in hDPSC-treated animals closely associated with anti-GFAP staining in the lesion scar tissue, suggesting that these cells were able to migrate to the injury site and could be providing support to CNS cells. Our study evidence novel evidence that hDPSC can contribute to the recovery following hypoxia-ischemia and highlight the need of further investigation in order to better understand the exact mechanisms underlying its neuroprotective effects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Blencowe H, Cousens S, Chou D et al (2013) Born too soon: the global epidemiology of 15 million preterm births. Reprod Health 10(Suppl 1):S2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 86:329–338.

    Article  PubMed  Google Scholar 

  3. 3.

    Rossouw G, Irlam J, Horn AR (2015) Therapeutic hypothermia for hypoxic ischaemic encephalopathy using low-technology methods: a systematic review and meta-analysis. Acta Paediatr 104:1217–1228.

    Article  PubMed  Google Scholar 

  4. 4.

    Berger R, Garnier Y (1999) Pathophysiology of perinatal brain damage. Brain Res Brain Res Rev 30:107–134.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Johnston MV, Trescher WH, Ishida A, Nakajima W (2001) Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res 49:735–741.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    McLean C, Ferriero D (2004) Mechanisms of hypoxic-ischemic injury in the term infant. Semin Perinatol 28:425–432.

    Article  PubMed  Google Scholar 

  7. 7.

    Gunn AJ, Bennet L (2009) Fetal hypoxia insults and patterns of brain injury: insights from animal models. Clin Perinatol 36:579–593.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Fan LW, Pang Y, Lin S et al (2005) Minocycline reduces lipopolysaccharide-induced neurological dysfunction and brain injury in the neonatal rat. J Neurosci Res 82:71–82.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Vannucci SJ, Hagberg H (1960) Hypoxia-ischemia in the immature brain. J Exp Biol 207:3149–3154

    Article  Google Scholar 

  10. 10.

    Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9(2):131–141

    Article  Google Scholar 

  11. 11.

    Lubics A, Reglodi D, Tamás A et al (2005) Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury. Behav Brain Res 157:157–165.

    Article  PubMed  Google Scholar 

  12. 12.

    Sanches EF, Arteni NS, Spindler C et al (2012) Effects of pre- and postnatal protein malnutrition in hypoxic-ischemic rats. Brain Res 1438:85–92.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Arteni NS, Pereira LO, Rodrigues AL et al (2010) Lateralized and sex-dependent behavioral and morphological effects of unilateral neonatal cerebral hypoxia-ischemia in the rat. Behav Brain Res 210:92–98.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Pereira LO, Arteni NS, Petersen RC et al (2007) Effects of daily environmental enrichment on memory deficits and brain injury following neonatal hypoxia-ischemia in the rat. Neurobiol Learn Mem 87:101–108.

    Article  PubMed  Google Scholar 

  15. 15.

    Ikeda T, Mishima K, Yoshikawa T et al (2001) Selective and long-term learning impairment following neonatal hypoxic-ischemic brain insult in rats. Behav Brain Res 118:17–25.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Hill CA, Threlkeld SW, Fitch RH (2011) Reprint of “Early testosterone modulated sex differences in behavioral outcome following neonatal hypoxia ischemia in rats”. Int J Dev Neurosci 29:621–628.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Vannucci RC, Vannucci. SJ (2005) Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev Neurosci 27(2-4):81–86

    CAS  Article  Google Scholar 

  18. 18.

    Mishima K, Ikeda T, Aoo N et al (2005) Hypoxia-ischemic insult in neonatal rats induced slowly progressive brain damage related to memory impairment. Neurosci Lett 376:194–199.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Towfighi J, Mauger D, Vannucci RC, Vannucci SJ (1997) Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res 100:149–160

    CAS  Article  Google Scholar 

  20. 20.

    da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Secco M, Zucconi E, Vieira NM et al (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26:146–150.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Zhang X, Hirai M, Cantero S et al (2011) Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem 112:1206–1218.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Cordeiro MM, Dong Z, Kaneko T et al (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34:962–969.

    Article  PubMed  Google Scholar 

  24. 24.

    Nadig RR (2009) Stem cell therapy—hype or hope? A review. J Conserv Dent 12:131–138.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Yalvac ME, Rizvanov A, Kilic E et al (2009) Potential role of dental stem cells in the cellular therapy of cerebral ischemia. Curr Pharm Des 15:3908–3916.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Király M, Kádár K, Horváthy DB et al (2011) Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int 59:371–381.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Gronthos S, Mankani M, Brahim J et al (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Young F, Sloan A, Song B (2013) Dental pulp stem cells and their potential roles in central nervous system regeneration and repair. J Neurosci Res 91:1383–1393.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Nicola FDC, Marques C, Odorcyk MR F et al (2017) Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Res 1663:95–105.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    de Paula S, Vitola a S, Greggio S et al (2009) Hemispheric brain injury and behavioral deficits induced by severe neonatal hypoxia-ischemia in rats are not attenuated by intravenous administration of human umbilical cord blood cells. Pediatr Res 65:631–635.

    Article  PubMed  Google Scholar 

  31. 31.

    Pimentel-Coelho PM, Mendez-Otero R (2010) Cell therapy for neonatal hypoxic-ischemic encephalopathy. Stem Cells Dev 19:299–310.

    Article  PubMed  Google Scholar 

  32. 32.

    van Velthoven CTJ, Kavelaars A, van Bel F, Heijnen CJ (2010) Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration. Brain Behav Immun 24:387–393.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Arien-Zakay H, Lecht S, Nagler A, Lazarovici P (2011) Neuroprotection by human umbilical cord bloodderived progenitors in ischemic brain injuries. Arch Ital Biol 149:233–245.

    Article  PubMed  Google Scholar 

  34. 34.

    Titomanlio L, Kavelaars A, Dalous J et al (2011) Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol 70:698–712.

    Article  PubMed  Google Scholar 

  35. 35.

    Lee JINa, Kim BIL, Jo CH et al (2010) Mesenchymal stem-cell transplantation for hypoxic-ischemic brain injury in neonatal rat model. Pediatr Res 67:42–46

    CAS  Article  Google Scholar 

  36. 36.

    Chicha L, Smith T, Guzman R (2014) Stem cells for brain repair in neonatal hypoxia-ischemia. Childs Nerv Syst 30:37–46.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Bernardi L, Luisi SB, Fernandes R et al (2011) The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption. J Endod 37:973–979.

    Article  PubMed  Google Scholar 

  38. 38.

    Arteni NS, Salgueiro J, Torres I et al (2003) Neonatal cerebral hypoxia-ischemia causes lateralized memory impairments in the adult rat. Brain Res 973:171–178.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Rogers DC, Campbell CA, Stretton JL, Mackay KB (1997) Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat. Stroke 28:2060–2066

    CAS  Article  Google Scholar 

  40. 40.

    Pereira LO, Strapasson ACP, Nabinger PM et al (2008) Early enriched housing results in partial recovery of memory deficits in female, but not in male, rats after neonatal hypoxia-ischemia. Brain Res 1218:257–266.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Yasuhara T, Hara K, Maki M et al (2008) Intravenous grafts recapitulate the neurorestoration afforded by intracerebrally delivered multipotent adult progenitor cells in neonatal hypoxic-ischemic rats. J Cereb Blood Flow Metab 28:1804–1810.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Park S, Koh SE, Maeng S et al (2011) Neural progenitors generated from the mesenchymal stem cells of first-trimester human placenta matured in the hypoxic-ischemic rat brain and mediated restoration of locomotor activity. Placenta 32:269–276.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Ten VS, Wu EX, Tang H et al (2004) Late measures of brain injury after neonatal hypoxia-ischemia in mice. Stroke 35:2183–2188.

    Article  PubMed  Google Scholar 

  44. 44.

    Katsumata N, Kuroiwa T, Ishibashi S et al (2006) Heterogeneous hyperactivity and distribution of ischemic lesions after focal cerebral ischemia in Mongolian gerbils. Neuropathology 26:283–292.

    Article  PubMed  Google Scholar 

  45. 45.

    Rojas JJ, Deniz BF, Miguel PM et al (2013) Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia-ischemia in the rat. Exp Neurol 241:25–33.

    Article  PubMed  Google Scholar 

  46. 46.

    Ma J, Wang Y, Yang J et al (2007) Treatment of hypoxic-ischemic encephalopathy in mouse by transplantation of embryonic stem cell-derived cells. Neurochem Int 51:57–65.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Fang C, Yang Y, Wang Q et al (2013) Intraventricular injection of human dental pulp stem cells improves hypoxic-ischemic brain damage in neonatal rats. PLoS ONE 8:e66748.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Donega V, van Velthoven CTJ, Nijboer CH et al (2013) Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement. PLoS ONE 8:1–7.

    CAS  Article  Google Scholar 

  49. 49.

    Donega V, Nijboer CH, van Tilborg G et al (2014) Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury. Exp Neurol 261:53–64.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Yamagata M, Yamamoto A, Kako E et al (2013) Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 44:551–554.

    Article  PubMed  Google Scholar 

  51. 51.

    Yasuhara T, Matsukawa N, Yu G, Xu L, Mays RW, Kovach J et al (2006) Behavioral and histological characterization of intrahippocampal grafts of human bone marrow-derived multipotent progenitor cells in neonatal rats with hypoxic-ischemic injury. Cell Transplant 15(3):231–238

    Article  Google Scholar 

  52. 52.

    Paliwal S, Chaudhuri R, Agrawal A, Mohanty S (2018) Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci doi.

    Article  Google Scholar 

  53. 53.

    Sugiyama M, Iohara K, Wakita H et al (2011) Dental pulp-derived CD31/CD146 side population stem/progenitor cells enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 17:1303–1311.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Estrela C, de Alencar AHG, Kitten GT et al (2011) Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz Dent J 22:91–98.

    Article  PubMed  Google Scholar 

Download references


We thank The National Council for Scientific and Technological Development (CNPq), FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul) and Stem Cell Research Institute (SCRI) for their financial support.

Author information



Corresponding author

Correspondence to Eduardo Farias Sanches.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanches, E.F., Valentim, L., de Almeida Sassi, F. et al. Intracardiac Injection of Dental Pulp Stem Cells After Neonatal Hypoxia-Ischemia Prevents Cognitive Deficits in Rats. Neurochem Res 43, 2268–2276 (2018).

Download citation


  • Dental pulp stem cells
  • hDPSCs
  • Neonatal hypoxia-ischemia
  • Cellular therapy
  • Memory