Skip to main content
Log in

E3 Ubiquitin Ligase c-cbl Inhibits Microglia Activation After Chronic Constriction Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

E3 ubiquitin ligase c-Caritas B cell lymphoma (c-cbl) is associated with negative regulation of receptor tyrosine kinases, signal transduction of antigens and cytokine receptors, and immune response. However, the expression and function of c-cbl in the regulation of neuropathic pain after chronic constriction injury (CCI) are unknown. In rat CCI model, c-cbl inhibited the activation of spinal cord microglia and the release of pro-inflammatory factors including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), which alleviated mechanical and heat pain through down-regulating extracellular signal-regulated kinase (ERK) pathway. Additionally, exogenous TNF-α inhibited c-cbl protein level vice versa. In the primary microglia transfected with c-cbl siRNA, when treated with TNF-α or TNF-α inhibitor, the corresponding secretion of IL-1β and IL-6 did not change. In summary, CCI down-regulated c-cbl expression and induced the activation of microglia, then activated microglia released inflammatory factors via ERK signaling to cause pain. Our data might supply a novel molecular target for the therapy of CCI-induced neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gosselin RD, Suter MR, Ji RR, Decosterd I (2010) Glial cells and chronic pain. Neuroscientist 16:519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zhang ZJ, Jiang BC, Gao YJ (2017) Chemokines in neuron–glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci 74:1–17

    Article  CAS  Google Scholar 

  3. Carballovillalobos AI, Gonzáleztrujano ME, Alvaradovázquez N, Lópezmuñoz FJ (2017) Pro-inflammatory cytokines involvement in the hesperidin antihyperalgesic effects at peripheral and central levels in a neuropathic pain model. Inflammopharmacology 25:1–5

    Article  CAS  Google Scholar 

  4. Zuo W, Huang F, Chiang YJ, Li M, Du J, Ding Y, Zhang T, Lee H, Jeong L, Chen Y (2013) c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-β type II receptor. Mol Cell 49:499

    Article  PubMed  CAS  Google Scholar 

  5. Caligiuri MA, Briesewitz R, Yu J, Wang L, Wei M, Arnoczky KJ, Marburger TB, Wen J, Perrotti D, Bloomfield CD (2007) Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood 110:1022–1024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GE, Natarajan A, Raja SM, Naramura M, Band V, Band H (2013) Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. Biochim Biophys Acta 1833:122–139

    Article  PubMed  CAS  Google Scholar 

  7. Bachmaier K, Krawczyk C (2000) Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403:211–216

    Article  PubMed  CAS  Google Scholar 

  8. Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322

    Article  PubMed  CAS  Google Scholar 

  9. Qiao G, Zhao Y, Li Z, Tang PQ, Langdon WY, Yang T, Zhang J (2013) T cell activation threshold regulated by E3 ubiquitin ligase Cbl-b determines fate of inducible regulatory T cells. J Immunol 191:632–639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wallner S, Lutz-Nicoladoni C, Tripp CH, Gastl G, Baier G, Penninger JM, Stoitzner P, Wolf D (2013) The role of the e3 ligase cbl-B in murine dendritic cells. PLoS ONE 8:e65178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dong L, Li YZ, An HT, Wang YL, Chen SH, Qian YJ, Wang K, Zhen JL, Fan Z, Gong XL (2016) The E3 ubiquitin ligase c-Cbl inhibits microglia-mediated CNS inflammation by regulating PI3K/Akt/NF-κB pathway. CNS Neurosci Ther 22:661

    Article  PubMed  CAS  Google Scholar 

  12. Schafer Dorothy P, Lehrman Emily K, Kautzman Amanda G, Koyama R, Mardinly Alan R, Yamasaki R, Ransohoff Richard M, Greenberg Michael E, Barres Ben A, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B (2015) Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol 36:605–613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468

    Article  PubMed  CAS  Google Scholar 

  15. Colton CA, Wilcock DM (2010) Assessing activation states in microglia. CNS Neurol Disord Drug Targets 9:174–191

    Article  PubMed  CAS  Google Scholar 

  16. Masuda T, Prinz M (2016) Microglia: a unique versatile cell in the central nervous system. ACS Chem Neurosci 7:428–434

    Article  PubMed  CAS  Google Scholar 

  17. Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90

    Article  PubMed  Google Scholar 

  18. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

  19. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  PubMed  CAS  Google Scholar 

  20. Hartung JE, Ciszek BP, Nackley AG (2014) beta2- and beta3-adrenergic receptors drive COMT-dependent pain by increasing production of nitric oxide and cytokines. Pain 155:1346–1355

    Article  PubMed  CAS  Google Scholar 

  21. Zhu X, Yao L, Guo A, Li A, Sun H, Wang N, Liu H, Duan Z, Cao J (2014) CAP1 was associated with actin and involved in Schwann cell differentiation and motility after sciatic nerve injury. J Mol Histol 45:337–348

    Article  PubMed  CAS  Google Scholar 

  22. Wallner FK, Hopkins MH, Lindvall T, Olofsson P, Tilevik A (2017) Cytokine correlation analysis based on drug perturbation. Cytokine 90:73–79

    Article  PubMed  CAS  Google Scholar 

  23. Kong H, Omran A, Ashhab MU, Gan N, Peng J, He F, Wu L, Deng X, Yin F (2014) Changes in microglial inflammation-related and brain-enriched microRNAs expressions in response to in vitro oxygen–glucose deprivation. Neurochem Res 39:233–243

    Article  PubMed  CAS  Google Scholar 

  24. Gioia R, Trégoat C, Dumas PY, Lagarde V, Prouzet-Mauléon V, Desplat V, Sirvent A, Praloran V, Lippert E, Villacreces A (2015) CBL controls a tyrosine kinase network involving AXL, SYK and LYN in nilotinib-resistant chronic myeloid leukaemia. J Pathol 237:14–24

    Article  PubMed  CAS  Google Scholar 

  25. Sirvent A, Leroy C, Simon A, Roche V S (2008) The Src-like adaptor protein regulates PDGF-induced actin dorsal ruffles in a c-Cbl-dependent manner. Oncogene 27:3494

    Article  PubMed  CAS  Google Scholar 

  26. Li H, Li T, Fan J, Fan L, Wang S, Weng X, Han Q, Zhao RC (2015) miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death Differ 22:1935–1945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kline CL, Olson TL, Irby RB (2009) Src activity alters alpha3 integrin expression in colon tumor cells. Clin Exp Metastasis 26:77

    Article  PubMed  CAS  Google Scholar 

  28. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756

    Article  PubMed  CAS  Google Scholar 

  29. Schäfers M, Svensson CI, Sommer C, Sorkin LS (2003) Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci 23:2517–2521

    Article  PubMed  Google Scholar 

  30. Sommer C, Schäfers M, Marziniak M, Toyka KV (2001) Etanercept reduces hyperalgesia in experimental painful neuropathy. J Peripher Nerv Syst 6:67

    Article  PubMed  CAS  Google Scholar 

  31. Xu JT, Xin WJ, Zang Y, Wu CY, Liu XG (2006) The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain 123:306–321

    Article  PubMed  CAS  Google Scholar 

  32. Constantin CE, Mair N, Sailer CA, Andratsch M, Xu ZZ, Blumer MJ, Scherbakov N, Davis JB, Bluethmann H, Ji RR, Kress M (2008) Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model. J Neurosci 28:5072–5081

    Article  PubMed  CAS  Google Scholar 

  33. Pelletier C, Varin-Blank N, Rivera J, Iannascoli B, Marchand F, David B, Weyer A, Blank U Pelletier C et al (1998) FcRI-mediated induction of TNF- gene expression in the RBL-2H3 mast cell line: regulation by a novel NF-B-like nuclear binding complex. J Immunol 161:4768–4776

    PubMed  CAS  Google Scholar 

  34. Ping D, Boekhoudt G, Zhang F, Morris A, Philipsen S, Warren ST, Boss JM (2000) Sp1 binding is critical for promoter assembly and activation of the MCP-1 gene by tumor necrosis factor. J Biol Chem 275:1708

    Article  PubMed  CAS  Google Scholar 

  35. You M, Flick LM, Yu D, Feng GS (2001) Modulation of the nuclear factor kappa B pathway by Shp-2 tyrosine phosphatase in mediating the induction of interleukin (IL)-6 by IL-1 or tumor necrosis factor. J Exp Med 193:101–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Costa B, Trovato AE, Colleoni M, Giagnoni G, Zarini E, Croci T (2005) Effect of the cannabinoid CB1 receptor antagonist, SR141716, on nociceptive response and nerve demyelination in rodents with chronic constriction injury of the sciatic nerve. Pain 116:52–61

    Article  PubMed  CAS  Google Scholar 

  37. Komirishetty P, Areti A, Sistla R, Kumar A (2016) Morin mitigates chronic constriction injury (CCI)-induced peripheral neuropathy by inhibiting oxidative stress induced PARP over-activation and neuroinflammation. Neurochem Res 41:2029–2042

    Article  PubMed  CAS  Google Scholar 

  38. Gabay E, Tal M (2004) Pain behavior and nerve electrophysiology in the CCI model of neuropathic pain. Pain 110:354–360

    Article  PubMed  Google Scholar 

  39. Tatsumi E, Yamanaka H, Kobayashi K, Yagi H, Sakagami M, Noguchi K (2015) RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain. Glia 63:216–228

    Article  PubMed  Google Scholar 

  40. Echeverry S, Shi XQ, Yang M, Huang H, Wu Y, Lorenzo LE, Perez-Sanchez J, Bonin RP, De Koninck Y, Zhang J (2017) Spinal microglia are required for long-term maintenance of neuropathic pain. Pain 158:1792–1801

    Article  PubMed  Google Scholar 

  41. Martini AC, Berta T, Forner S, Chen G, Bento AF, Ji RR, Rae GA (2016) Lipoxin A4 inhibits microglial activation and reduces neuroinflammation and neuropathic pain after spinal cord hemisection. J Neuroinflammation 13:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Liu X, Zhang Z, Cheng Z, Zhang J, Xu S, Liu H, Jia H, Jin Y (2016) Spinal heme oxygenase-1 (HO-1) exerts antinociceptive effects against neuropathic pain in a mouse model of L5 spinal nerve ligation. Pain Med 17:220–229

    PubMed  Google Scholar 

  43. Wang D, Xue Y, Chen Y, Ruan L, Hong Y (2016) Mas-related gene (Mrg) C receptors inhibit mechanical allodynia and spinal microglia activation in the early phase of neuropathic pain in rats. Neurosci Lett 618:115–121

    Article  PubMed  CAS  Google Scholar 

  44. Zhang T, Sun K, Shen W, Qi L, Yin W, Wang LW (2016) SOCS1 regulates neuropathic pain by inhibiting neuronal sensitization and glial activation in mouse spinal cord. Brain Res Bull 124:231–237

    Article  PubMed  CAS  Google Scholar 

  45. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72:3666–3670

    Article  PubMed  CAS  Google Scholar 

  46. Shubayev VI, Myers RR (2001) Axonal transport of TNF-alpha in painful neuropathy: distribution of ligand tracer and TNF receptors. J Neuroimmunol 114:48–56

    Article  PubMed  CAS  Google Scholar 

  47. Zhang H, Zhang H, Dougherty PM (2013) Dynamic effects of TNF-alpha on synaptic transmission in mice over time following sciatic nerve chronic constriction injury. J Neurophysiol 110:1663–1671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Jancalek R, Dubovy P, Svizenska I, Klusakova I (2010) Bilateral changes of TNF-alpha and IL-10 protein in the lumbar and cervical dorsal root ganglia following a unilateral chronic constriction injury of the sciatic nerve. J Neuroinflammation 7:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Li YY, Wei XH, Lu ZH, Chen JS, Huang QD, Gong QJ (2013) Src/p38 MAPK pathway in spinal microglia is involved in mechanical allodynia induced by peri-sciatic administration of recombinant rat TNF-alpha. Brain Res Bull 96:54–61

    Article  PubMed  CAS  Google Scholar 

  50. Liu YL, Zhou LJ, Hu NW, Xu JT, Wu CY, Zhang T, Li YY, Liu XG (2007) Tumor necrosis factor-alpha induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn in rats with nerve injury: the role of NF-kappa B, JNK and p38 MAPK. Neuropharmacology 52:708–715

    Article  PubMed  CAS  Google Scholar 

  51. Sommer C, Lindenlaub T, Teuteberg P, Schafers M, Hartung T, Toyka KV (2001) Anti-TNF-neutralizing antibodies reduce pain-related behavior in two different mouse models of painful mononeuropathy. Brain Res 913:86–89

    Article  PubMed  CAS  Google Scholar 

  52. Zanella JM, Burright EN, Hildebrand K, Hobot C, Cox M, Christoferson L, McKay WF (2008) Effect of etanercept, a tumor necrosis factor-alpha inhibitor, on neuropathic pain in the rat chronic constriction injury model. Spine (Phila Pa 1976) 33:227–234

    Article  Google Scholar 

  53. Kundu M, Pathak SK (2009) A TNF- and c-Cbl-dependent FLIP(S)-degradation pathway and its function in Mycobacterium tuberculosis-induced macrophage apoptosis. Nat Immunol 10:918

    Article  PubMed  CAS  Google Scholar 

  54. Manganaro D, Consonni A, Guidetti GF, Canobbio I, Visconte C, Kim S, Okigaki M, Falasca M, Hirsch E, Kunapuli SP, Torti M (2015) Activation of phosphatidylinositol 3-kinase beta by the platelet collagen receptors integrin alpha2beta1 and GPVI: the role of Pyk2 and c-Cbl. Biochim Biophys Acta 1853:1879–1888

    Article  PubMed  CAS  Google Scholar 

  55. Dong L, Li YZ, An HT, Wang YL, Chen SH, Qian YJ, Wang K, Zhen JL, Fan Z, Gong XL, Zheng Y, Wang XM (2016) The E3 ubiquitin ligase c-Cbl inhibits microglia-mediated CNS inflammation by regulating PI3K/Akt/NF-kappaB pathway. CNS Neurosci Ther 22:661–669

    Article  PubMed  CAS  Google Scholar 

  56. Chen SP, Zhou YQ, Liu DQ, Zhang W, Manyande A, Guan XH, Tian YK, Ye DW, Omar DM (2017) PI3K/Akt pathway: a potential therapeutic target for chronic pain. Curr Pharm Des 23:1860–1868

    Article  PubMed  CAS  Google Scholar 

  57. Zhang L, Fu ZJ, Sun T, Zhao XL, Song WG, Jia MR, Wei GF (2010) [Expression of NF-kappaB and TNF-alpha in spinal dorsal horn in a rat model of neuropathic pain]. Zhonghua Yi Xue Za Zhi 90:1067–1071

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81501076, 81401365), the Science and Technology of construction and people’s livelihood Foundation of Jiangsu Province (BL2014061), Jiangsu Province Young Medical Key Talents Project of China (QNRC2016407), the Nantong Science and Technology Innovation Project (No. MS12015056); and the 14th Six Talents Peak Project of Jiangsu Province (No. SWYY-058), and National Natural Youth Science Fund (No. 81702216).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Cui or Guofeng Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, P., Liu, X., Shen, Y. et al. E3 Ubiquitin Ligase c-cbl Inhibits Microglia Activation After Chronic Constriction Injury. Neurochem Res 43, 1631–1640 (2018). https://doi.org/10.1007/s11064-018-2578-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2578-8

Keywords

Navigation